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1 Introduction

Achterbahn is an additive binary (synchronous) stream cipher. In an additive binary
stream cipher encryption and decryption are realized by adding bitwise a binary
pseudorandom sequence, called the keystream, to the plaintext string or ciphertext
string, respectively. The binary pseudorandom sequence is produced by a finite state
automaton, called the keystream generator, whose initial internal state depends on
the secret key K and a public initial value IV .

The keystream generator of ACHTERBAHN-80 deploys eleven primitive binary
nonlinear feedback shift registers. These shift registers are the nonlinear coun-
terparts of the popular linear feedback shift registers with primitive characteris-
tic polynomials. The keystream generator of ACHTERBAHN-128 deploys thirteen
primitive nonlinear feedback shift registers and contains the keystream generator of
ACHTERBAHN-80 as a substructure. As a consequence of this, ACHTERBAHN-
128 is downward compatible and can produce the same keystream as ACHTER-
BAHN-80 if so desired—hence the name ACHTERBAHN-128/80.

The expected design strengths of ACHTERBAHN-80 and ACHTERBAHN-128
correspond to the key sizes of 80 bits and 128 bits, respectively. These are the
maximum key lengths. However, all key lengths between 40 bits and 80 bits and
between 40 bits and 128 bits, respectively, can be used, provided that the key
lengths are divisible by eight. ACHTERBAHN-80 accommodates the IV -lengths
0, 8, 16, . . . , 72, 80. ACHTERBAHN-128 accommodates the IV -lengths 0, 8, 16, . . . ,
120, 128. Shorter key or IV -lengths lead to shorter key-loading and resynchroniza-
tion times. For example, instead of using ACHTERBAHN-128 with an 128-bit secret
key K and an 128-bit initial value IV , in some applications it might be sufficient to
use a 96-bit key and a 64-bit initial value. This would reduce the resynchronization
time by approximately 30% or, to be more specific, from 337 clock cycles to 241
clock cycles in the 1-bit implementation, and from 43 clock cycles to 31 clock cycles
in the 8-bit implementation of the keystream generator.

For a fixed (K, IV ) pair the maximum amount of keystream that can be used for
encryption, the so-called frame length, is 264 bits for both variants of Achterbahn.
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If this amount of keystream is consumed we can use a different initial value IV
with the same key K to produce another 264 bits of keystream. The process can be
repeated until all initial values are exhausted. Only then it becomes necessary to
change the secret key K. In practice, of course, the amount of keystream between
resynchronization steps is much smaller than 264 bits, and short resynchronization
times are more important than long frame lengths. We collect the parameters of
both Achterbahn variants in Table 1.

ACHTERBAHN-80 ACHTERBAHN-128

Maximum key size 80 bit 128 bit

Maximum IV size 80 bit 128 bit

Internal state 297 bit 351 bit

Frame length 264 bit 264 bit

Table 1: Parameters of Achterbahn

We state that there are no hidden weaknesses in the proposed stream cipher that
are inserted by the designers, nor are we aware of any weaknesses in the design.

ACHTERBAHN-128/80 is our contribution to the second phase of eSTREAM, a
stream cipher project of ECRYPT NoE. Achterbahn-128/80 is a further development
of our first stream cipher proposal, that was submitted to eSTREAM on April 28,
2005, and was called “The Achterbahn Stream Cipher” with no assigned version
number [9]. If we refer to the stream cipher of the initial proposal we shall now use
the name “Achterbahn-1”.1

1In the literature [19] one can also find the names “Achterbahn-v2” and “Achterbahn-v3”.
They refer to modified variants of Achterbahn-1 which were not released by the designers [10]. A
paper [15] dealing with a not fully specified predecessor version of Achterbahn-80 [11] containing an
incorrect cryptanalysis has recently been posted at http://www.ecrypt.eu.org/stream/papers.html.
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2 Preliminaries

In this section we discuss some basic facts that will be used throughout the proposal.

2.1 Notions and notation

We use F2 to denote the binary finite field which consists of two elements, 0 and 1.
F2[x] denotes the ring of polynomials in the indeterminate x and with coefficients
from F2. The elements of F2[x] are called binary polynomials. A sequence of elements
s0, s1, . . . of F2 is called a binary sequence and is represented in the form σ = (sn)∞n=0.
If σ = (sn)

∞
n=0 and τ = (tn)∞n=0 are two binary sequences, then their sum σ + τ and

product στ are defined termwise: σ + τ = (sn + tn)∞n=0 and στ = (sntn)∞n=0. The
scalar product of a binary sequence σ = (sn)

∞
n=0 and an element c ∈ F2 is defined

by cσ = (csn)∞n=0.

We use the symbol F
∞
2 to denote the set of all binary sequences. Endowed with

the above defined addition and scalar multiplication F
∞
2 becomes a vector space

over the field F2. We shall use the symbol F
∞
2 also to denote this vector space. A

useful linear operator on F
∞
2 is the shift operator T , defined by Tσ = (sn+1)

∞
n=0 for

all σ ∈ F
∞
2 .

A sequence σ = (sn)
∞
n=0 is called periodic if there exists a positive integer p such

that sn+p = sn for all n ≥ 0. The least positive integer with this property is called
the least period of σ and we then write p = per(σ).

If g is a binary polynomial then g(T ) defines a linear operator on the vector space
F
∞
2 . If σ ∈ F

∞
2 is periodic, then there are infinitely many polynomials g ∈ F2[x]

such that g(T )σ is the zero sequence 0 = (0, 0, . . . ). Each of these polynomials
is called a characteristic polynomial of σ. For instance, g(x) = xper(σ) − 1 is a
characteristic polynomial of σ. The binary characteristic polynomial of least degree
is called the minimal polynomial of σ and denoted by mσ. The minimal polynomial
mσ is uniquely determined by the sequence σ and has the property that it divides
every characteristic polynomial of σ (see Appendix A.) The degree of mσ is called
the linear complexity of σ, denoted by L(σ). The minimal polynomial of the zero
sequence is the constant polynomial m(x) = 1 so that the linear complexity of the
zero sequence is 0.

Let σ = (sn)∞n=0 be a nonzero periodic sequence in F
∞
2 with minimal polynomial

mσ(x) = xL + aL−1x
L−1 + · · ·+ a1x + a0.

Then mσ(T )σ = 0 is just a condensed way of saying that

sn+L = aL−1sn+L−1 + · · ·+ a1sn+1 + a0sn for all n ≥ 0.

That is, the terms of the sequence σ satisfy a linear recurrence relation of order L.
The sequence σ is uniquely determined by the linear recurrence relation and the L
initial values s0, s1, . . . , sL−1.
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2.2 Feedback shift registers

Mathematically speaking, a binary N -stage feedback shift register (FSR) is a map-
ping Λ from F

N
2 into F

N
2 of the form

Λ : (x0, x1, . . . , xN−1) 7→ (x1, x2, . . . , xN−1, A(x0, x1, . . . , xN−1)). (1)

The function A : F
N
2 → F2 is called the feedback function. The shift register is called

a linear feedback shift register (LFSR) if Λ is a linear transformation from the vector
space F

N
2 into itself. Otherwise the shift register is called a nonlinear feedback shift

register. The shift register is called nonsingular if Λ is a bijection. All feedback
shift registers used in the design of the proposed stream cipher are nonsingular and
nonlinear.

Consider a binary sequence σ = (sn)∞n=0 whose first N terms s0, s1, . . . , sN−1 are
given and whose remaining terms are uniquely determined by the recurrence relation

sn+N = A(sn, sn+1, . . . , sn+N−1) for all n ≥ 0. (2)

Then we call σ an output sequence of the FSR in (1). The binary N -tuple s0 =
(s0, s1, . . . , sN−1) is referred to as the initial state vector of σ or the initial state of
the FSR.

The recurrence relation (2) can be implemented in hardware as a special elec-
tronic switching circuit consisting of N memory cells (flip-flops) which we shall
denote by D0, D1, . . . , DN−1. Each cell can store one binary element, 0 or 1. The
shift register is regulated by an external clock. Assume that at the outset Dj con-
tains the element sj, 0 ≤ j ≤ N − 1. At each clock pulse, the content of Dj is
shifted one position to the left into the next cell Dj−1, 1 ≤ j ≤ N − 1. The content
of the left-most cell D0 is emitted (or discarded) while the right-most cell DN−1

receives a new term computed by the feedback function A(x0, x1, . . . , xN−1) from
the N previous terms. If at any clock pulse the content of D0 is emitted, then the
sequence σ = (sn)

∞
n=0 is produced.

Example 1. The feedback function

A(x0, x1, . . . , x4) = x0 + x1 + x3 + x1x3

defines a binary 5-stage NLFSR. The shift register is shown in Figure 1.

If we start the shift register in the initial state s0 = (0, 0, 0, 0, 1) and use D0 as the
output cell, then the shift register will generate a binary sequence σ of least period
31 given by

σ = (0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1)∞.

The sequence σ = (sn)∞n=0 is uniquely determined by the nonlinear recurrence rela-
tion

sn+5 = sn+3sn+1 + sn+3 + sn+1 + sn for all n ≥ 0,

and the initial values s0 = s1 = s2 = s3 = 0, and s4 = 1. If we compute the
linear complexity of σ (e.g., with the Berlekamp-Massey algorithm), we find that
L(σ) = 30, which means that σ could also be generated by a linear feedback shift
register of length 30.
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Figure 1: A binary nonlinear feedback shift register

2.3 Primitive feedback shift registers

Clearly the least period of an output sequence of a binary N -stage FSR cannot
exceed 2N . Nonsingular shift registers with output sequences of least period 2N − 1
are important for a variety of reasons: (i) they exist; (ii) their output sequences have
good statistical properties; (iii) the output sequences have minimal polynomials with
a simple algebraic structure.

Definition 1. A nonsingular binary N -stage feedback shift register is called prim-
itive if for any nonzero binary initial state vector s0 = (s0, s1, . . . , sN−1), the corre-
sponding output sequence σ = (sn)

∞
n=0 has least period 2N − 1.

If A : F
N
2 → F2 is the feedback function of a primitive N -stage FSR, then we

clearly must have A(0) = 0. That is, a primitive FSR fixes the all-zero state. In
other words, the zero sequence is an output sequence of any primitive FSR. Notice
that the NLFSR considered in Example 1 is primitive.

Consider a binary N -stage LFSR with feedback function

F (x0, x1, . . . , xN−1) = aN−1xN−1 + · · ·+ a1x1 + a0x0.

The polynomial

f(x) = xN + F (1, x, x2, . . . , xN−1) = xN + aN−1x
N−1 + · · · + a1x + a0

is called the characteristic polynomial of the LFSR, and f(x) is usually used to
describe the LFSR (rather than the feedback function F ). The LFSR is a primitive
feedback shift register— in the sense of Definition 1— if and only if f(x) is a primitive
polynomial in F2[x]. This observation is the reason why we coined the name primitive
FSR for the shift registers in Definition 1.

Two periodic sequences that are shifted versions of each other (such sequences
are called cyclically equivalent) have the same minimal polynomial and, therefore,
also the same least period and linear complexity. Any two nonzero output sequences
of some primitive FSR are obviously cyclically equivalent so that the next definition
makes sense.

Definition 2. Let A be a binary N -stage primitive FSR. The minimal polynomial
of A, the period of A, and the linear complexity of A are defined to be the mini-
mal polynomial, the least period, and the linear complexity of any nonzero output
sequence of A, respectively.
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We mention three basic facts concerning binary primitive FSR’s.

Fact 1. The number BN of binary N-stage primitive FSR’s is given by

BN = 22N−1−N .

This was shown by Flye Sainte-Marie [4] in 1894 but the result went unnoticed for
a long time until it was rediscovered by De Bruijn [2], [3].2

Although the number BN is very large the portion of primitive FSR’s among all
binary nonsingular N -stage FSR’s is only 1/2N . One must also take into account
that most primitive FSR’s are not suitable for a low-cost hardware implementation
as their feedback functions are too complex.

Fact 2. Let σ = (sn)∞n=0 be a nonzero output sequence of a binary primitive N-stage
FSR. Let 1 ≤ k ≤ N and b = (b1, . . . , bk) ∈ F

k
2. Let Z(b) be the number of n in

{0, 1, . . . , 2N − 2} such that (sn, sn+1, . . . , sn+k−1) = b. Then

Z(b) =

{

2N−k − 1 for b = 0,

2N−k for b 6= 0.

Proof. Since the binary sequence σ has least period 2N − 1 and is generated by an
N -stage FSR which fixes the all-zero state, every nonzero binary N -tuple occurs
precisely once in a full portion of the period of σ. From this, the assertion follows
at once.

Fact 3. The minimal polynomial of a binary primitive N-stage FSR is the product
of distinct irreducible binary polynomials whose degrees divide N and are greater
than 1.

Fact 3 is a corollary to the following lemma.

Lemma 1. Let N be a positive integer, and let σ = (sn)∞n=0 be a binary periodic
sequence with least period 2N − 1. The canonical factorization of the minimal poly-
nomial of σ over F2 consists of distinct irreducible binary polynomials whose degrees
all divide N . In particular, the minimal polynomial of σ contains no repeated fac-
tors. If σ is a nonzero output sequence of a binary primitive N-stage FSR, then the
minimal polynomial of σ does not contain the factor x − 1.

2Both, C. Flye Sainte-Marie and N. G. de Bruijn proved that BN is equal to the number of
complete cycles in a De Bruijn graph containing 2N−1 vertices (and 2N edges)—or, equivalently,
that BN is the number of cyclically inequivalent binary De Bruijn sequences of span N . There
is, however, an obvious one-to-one correspondence between binary De Bruijn sequences of span N
and the nonzero output sequences of a binary primitive N -stage FSR. This correspondence then
implies that the number of binary primitive N -stage FSR’s coincides with BN .
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Proof. Set p = 2N − 1. The binary polynomial f(x) = xp − 1 is a characteristic
polynomial of σ. The minimal polynomial mσ(x) of σ divides f(x). Hence, mσ(x)
divides x2N

− x, which is the product of all irreducible binary polynomials whose
degrees divide N (see [21, Theorem 3.20]). If σ = (sn)∞n=0 is any nonzero output se-
quence of a primitive binary N -stage FSR, then the N -tuples (sn, sn+1, . . . , sn+N−1),
0 ≤ n ≤ p − 1, run through all nonzero vectors of F

N
2 . The element 1 oc-

curs exactly 2N−1 times among the first coordinates of these N -tuples. Hence,
s0 + s1 + · · · + sp−1 = 0. Since σ is periodic with per(σ) = p, we conclude that

sn + sn+1 + · · ·+ sn+p−1 = 0 for all n ≥ 0,

which means that

f(x) = xp−1 + xp−2 + · · · + x + 1

is a characteristic polynomial of σ. As f(1) 6= 0, the polynomial f(x) is not divisible
by x − 1, nor is the minimal polynomial mσ(x) which divides f(x).

The actual computation of the minimal polynomial of a primitive binary FSR
is increasingly difficult as the length N of the shift register gets larger. Using the
Berlekamp-Massey algorithm [21, p. 439] or the formula of Laksov [20], it can be
done up to shift register lengths N = 25.

Even if we cannot compute the minimal polynomial of a primitive FSR, we can
determine for any given irreducible polynomial f ∈ F2[x] whether or not f is a factor
of the minimal polynomial. This can be done up to shift register lengths N = 45
using the following algorithm. The algorithm is proved in Appendix B.

For a binary sequence σ = (sn)∞n=0 and a positive integer d we use s
(d)
n to denote

the d-tuple (sn, sn+1, . . . , sn+d−1).

ALGORITHM A:

Input: A binary primitive N -stage FSR (with unknown minimal polynomial m(x)).
An irreducible polynomial f ∈ F2[x] of degree d ≥ 2 such that d divides N .

1. Compute the polynomial

q(x) =
xp − 1

f(x)
= xp−d + c1x

p−d−1 + c2x
p−d−2 + · · · + cp−d−1x + cp−d ,

where p = 2N − 1 and f ∗(x) = xdf(1/x).

2. Choose an arbitrary nonzero initial state vector s0 = (s0, s1, . . . , sN−1) ∈ F
N
2

and produce one full period (s0, s1, . . . , sp−1) of the FSR.

3. Compute the row vector v ∈ F
d
2 according to

v = s
(d)
0 + c1s

(d)
1 + c2s

(d)
2 + · · · + cp−d−1s

(d)
p−d−1 + cp−ds

(d)
p−d .

Then, f(x) divides m(x) if and only if v is not the zero vector in F
d
2.
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Example 2. The feedback function F (x0, x1, x2, x3) = x0 + x1 + x2 + x1x3 defines
a binary primitive FSR of length N = 4. An output sequence of the shift register is

σ = (0 0 0 1 0 1 0 0 1 1 1 1 0 1 1)∞. (3)

We want to know whether f(x) = x4 + x + 1 is a factor of the minimal polynomial
of the FSR (respectively of σ). We use long division to compute the quotient q(x)
of x15 − 1 and f ∗(x) = x4 + x3 + 1. We obtain

q(x) = x11 + x10 + x9 + x8 + x6 + x4 + x3 + 1.

Next we compute v ∈ F
4
2:

v = s0 + s1 + s2 + s3 + s5 + s7 + s8 + s11 = (0, 1, 1, 0).

Since v 6= 0, the polynomial f(x) = x4 + x + 1 is a divisor of the FSR’s minimal
polynomial.

Example 3. We want to check whether f(x) = x2 +x+1 is a divisor of the minimal
polynomial of the shift register considered in the preceding example. Here we have
f ∗(x) = f(x), so that

q(x) =
x15 − 1

x2 + x + 1
= x13 + x12 + x10 + x9 + x7 + x6 + x4 + x3 + x + 1,

and

v = s
(2)
0 + s

(2)
1 + s

(2)
3 + s

(2)
4 + s

(2)
6 + s

(2)
7 + s

(2)
9 + s

(2)
10 + s

(2)
12 + s

(2)
13 = (0, 0).

Thus, f(x) = x2 + x + 1 is not a factor of the minimal polynomial of the FSR.
If we compute the minimal polynomial m(x) of the sequence σ in (3), using the
Berlekamp-Massey algorithm or Proposition 3A in Appendix A, we obtain

m(x) = x12 + x9 + x6 + x3 + 1 = (x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1),

which is in accordance with the above results.

A repeated application of Algorithm A can be used to assess the linear complexity
of a binary primitive N -stage FSR.

ALGORITHM B:

Input: A binary primitive N -stage FSR.

1. Choose at random a polynomial f from the pool of all binary irreducible
polynomials whose degrees divide N and are greater than 1.

2. Apply Algorithm A to determine whether or not f divides the minimal poly-
nomial of the given FSR.

3. Repeat Steps 1 and 2 several times.

If in all the repetitions it turns out that the chosen polynomial f is indeed a factor
of the minimal polynomial, then the linear complexity of the primitive N -stage FSR
is greater than 2N−1 with high probability.

8



2.4 Hardware considerations

In this section we present some basic facts about hardware costs. Table 2 below
contains a subset of logical gates taken from a standard cell library for 130 nm
CMOS technology. The hardware costs are given units of gate equivalents. One gate
equivalent (GE) is the area necessary to implement a 2-input NAND-gate on silicon.

Logical operation Binary function Hardware cost

NAND(a, b) ab + 1 1.00 GE

NOR(a, b) 1 + a + b + ab 1.00 GE

AND(a, b) ab 1.25 GE

OR(a, b) a + b + ab 1.25 GE

XOR(a, b) a + b 2.25 GE

NAND(a, b, c) abc + 1 1.25 GE

NOR(a, b, c) 1 + a + b + c + ab + ac + bc + abc 1.50 GE

AND(a, b, c) abc 1.50 GE

OR(a, b, c) a + b + c + ab + ac + bc + abc 1.75 GE

XOR(a, b, c) a + b + c 4.00 GE

MAJ(a, b, c) ab + ac + bc 2.25 GE

MUX(a, b; c) a + ac + bc 2.50 GE

Table 2: Hardware costs of logical operations

Reconsider the feedback shift register of Example 1. If we implement the feedback
function

A(x0, x1, . . . , x4) = x0 + x1 + x3 + x1x3 (4)

as depicted in Figure 1, we need three 2-input XOR-gates (3 × 2.25 GE) and one
2-input AND-gate (1.25 GE). The implementation costs of the feedback function are
then 8 GE. A better way to implement the feedback function would be to use one 2-
input OR-gate (1.25 GE) plus one 2-input XOR-gate (2.25 GE). The implementation
costs are then reduced to 3.5 GE. In fact, OR(a, b) = a∨ b = a+ b+ab for a, b ∈ F2,
so that (4) is equivalent to

A(x0, x1, . . . , x4) = x0 + (x1 ∨ x3).

The second implementation is preferable also because it has a lower logical depth.
The logical depth of the first implementation is three while the logical depth of the
second implementation is only two.

When implementing a FSR on hardware a considerable amount of area will be
used up for the implementation of the memory cells. We can distinguish three types
of flip-flops. The simplest and least expensive flip-flop (4.75 GE) is a flip-flop without
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Figure 2: A more efficient implementation of the FSR of Example 1

reset functionality. The more expensive scan flip-flop (6.75 GE) is a flip-flop with
an integrated multiplexor. The first two flip-flops in Table 3 have one data input
and one data output while a scan flip-flop has two data inputs and one data output.

Memory unit Hardware costs

Flip-flop 4.75 GE

Reset flip-flop 5.75 GE

Scan flip-flop 6.75 GE

Table 3: Hardware costs of memory units

The flip-flops used in the keystream generator of Achterbahn do not need to
have reset functionality. There is no need to reset a flip-flop at any time during
key-loading or resynchronization. In the first phase of the key-loading algorithm,
each flip-flop of any single FSR is loaded with a key bit. If the shift register has
length N , then it receives the first N bits of the secret key. We can introduce the
key bits into the flip-flops D0, D1, . . . , DN−1 in two different ways: Bit after bit, or
several key bits at once. The second method provides a higher resistance to simple
power analysis attacks but it also causes higher hardware costs—since we then have
to implement scan flip-flops or additional multiplexors.
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3 Specification

In this chapter, we describe the keystream generator of ACHTERBAHN-128/80
and specify its main ingredients: The Boolean combining function(s) and the prim-
itive feedback shift registers. We shall mention some cryptographic properties of
the combining and feedback functions. Finally, we shall describe the key-loading
algorithm.

3.1 The keystream generator

The keystream generator of ACHTERBAHN-128 consists of thirteen binary primi-
tive nonlinear feedback shift registers of lengths between 21 and 33 and a Boolean
combining function F : F

13
2 → F2. The function F combines the output sequences

of the thirteen feedback shift registers to produce the keystream ζ = (z0, z1, . . . ).
Throughout this proposal we shall use the capital letters Aj, j = 0, 1, . . . , 12, to
designate the primitive FSR’s and, in a slight abuse of notation, also to designate
the feedback functions of the shift registers. The length of the shift register Aj is
denoted by Nj. We have

Nj = 21 + j for j = 0, 1, . . . , 12.

Any nonzero output sequence of the shift register Aj will be denoted by σj, 0 ≤
j ≤ 12. The minimal polynomial, the period, and the linear complexity of the
shift register Aj (in the sense of Definition 2) will be denoted by mj, pj, and Lj,
respectively. We have

pj = per(σj) = 2Nj − 1 for j = 0, 1, . . . , 12.

Let the initial state of the shift register Aj prior to encryption be given by the
row vector

r0 = (r0, r1, . . . , rNj−1) ∈ F
Nj

2 .

The row vector r0 is derived from the secret key K and the initial value IV using
the key-loading algorithm to be described in Section 3.5. The key-loading algorithm
ensures that r0 will not be the zero vector no matter which (K, IV ) pair is used for
initialization.

The standard output sequence of the shift register Aj is defined to be the binary
sequence ρ = (rn)∞n=0, defined by

rn+Nj
= Aj(rn, rn+1, . . . , rn+Nj−1) for n = 0, 1, . . . .

We shall, however, not use the sequence ρ as an input sequence to the Boolean
combining function but rather a shifted version of ρ. We shall use the sequence
σj = T Nj−16ρ, where T is the shift operator on F

∞
2 . In other words, we use the

sequence σj = (s
(j)
n )∞n=0 with s

(j)
n = rn+Nj−16 for n ≥ 0 as the jth input sequence to

the Boolean combining function and we shall call this sequence the output sequence
of the shift register Aj.

Let for 0 ≤ j ≤ 12, σj = (s
(j)
n )∞n=0 be the output sequence of the shift register

Aj. Then the keystream ζ = (zn)∞n=0 of ACHTERBAHN-128 is defined by

zn = F (s(0)
n , s(1)

n , . . . , s(12)
n ) for n = 0, 1, . . . . (5)
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Instead of (5) we shall use in the sequel the more compact notation

ζ = F (σ0, σ1, . . . , σ12).

The keystream generator of ACHTERBAHN-80 consists of the eleven shift regis-
ters A1, . . . , A11, that are also used in the keystream generator of ACHTERBAHN-
128, and has a Boolean combining function G : F

11
2 → F2 which is a subfunction of

of the combining function of ACHTERBAHN-128:

G(x1, . . . , x11) = F (0, x1, . . . , x11, 0).

In other words, the keystream generator of ACHTERBAHN-128 contains the key-
stream generator of ACHTERBAHN-80 as a substructure. The design is reminiscent
to a set of Russian dolls.

ACHTERBAHN-128 is downward compatible to ACHTERBAHN-80: If we load
the first and the last shift register (i.e, the shift registers A0 and A12) into the all-zero
state, and if we load the remaining shift registers with the same key and initial value
as ACHTERBAHN-80, then ACHTERBAHN-128 will produce the same keystream
as ACHTERBAHN-80.

z
0
 z

1 
...

NLFSR A
0

NLFSR A
1

NLFSR A
2

NLFSR A
3

NLFSR A
4

NLFSR A
5

NLFSR A
6

NLFSR A
7

NLFSR A
8

NLFSR A
9

NLFSR A
10

NLFSR A
11

NLFSR A
12

F

G

Figure 3: The keystream generator of ACHTERBAHN-128/80
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What we have described so far is the 1-bit implementation of Achterbahn. In
this implementation, 1 bit of keystream is generated per clock cycle. A requirement
imposed on the shift registers A0, A1, . . . , A12 was that they should facilitate parallel
implementations of the keystream generator. In Section 6.1, we shall describe 2-bit,
4-bit, and 8-bit implementations of Achterbahn. In an 8-bit implementation, 1 byte
of keystream is generated per clock cycle. It is then possible to supply in real time
all eight (=acht) lines (=Bahnen) of a bus with keystream bits. This feature was the
reason for choosing the name ACHTERBAHN. The plain translation of the German
word Achterbahn is roller coaster.

3.2 The combining function of ACHTERBAHN-128

The algebraic normal form of the Boolean combining function of ACHTERBAHN-
128 is given by

F (x0, x1, . . . , x12) = x0 + x1 + x2 + x3 + x4 + x5 + x7 + x9 + x11 + x12 + x0x5

+ x2x10 + x2x11 + x4x8 + x4x12 + x5x6 + x6x8 + x6x10 + x6x11

+ x6x12 + x7x8 + x7x12 + x8x9 + x8x10 + x9x10 + x9x11 + x9x12

+ x10x12 + x0x5x8 + x0x5x10 + x0x5x11 + x0x5x12 + x1x2x8

+ x1x2x12 + x1x4x10 + x1x4x11 + x1x8x9 + x1x9x10 + x1x9x11

+ x1x9x12 + x2x3x8 + x2x3x12 + x2x4x8 + x2x4x10 + x2x4x11

+ x2x4x12 + x2x7x8 + x2x7x12 + x2x8x10 + x2x8x11 + x2x9x10

+ x2x9x11 + x2x10x12 + x2x11x12 + x3x4x8 + x3x4x12 + x3x8x9

+ x3x9x12 + x4x7x8 + x4x7x12 + x4x8x9 + x4x9x12 + x5x6x8

+ x5x6x10 + x5x6x11 + x5x6x12 + x6x8x10 + x6x8x11 + x6x10x12

+ x6x11x12 + x7x8x9 + x7x9x12 + x8x9x10 + x8x9x11 + x9x10x12

+ x9x11x12 + x0x5x8x10 + x0x5x8x11 + x0x5x10x12 + x0x5x11x12

+ x1x2x3x8 + x1x2x3x12 + x1x2x7x8 + x1x2x7x12 + x1x3x5x8

+ x1x3x5x12 + x1x3x8x9 + x1x3x9x12 + x1x4x8x10 + x1x4x8x11

+ x1x4x10x12 + x1x4x11x12 + x1x5x7x8 + x1x5x7x12 + x1x7x8x9

+ x1x7x9x12 + x1x8x9x10 + x1x8x9x11 + x1x9x10x12 + x1x9x11x12

+ x2x3x4x8 + x2x3x4x12 + x2x3x5x8 + x2x3x5x12 + x2x4x7x8

+ x2x4x7x12 + x2x4x8x10 + x2x4x8x11 + x2x4x10x12 + x2x4x11x12

+ x2x5x7x8 + x2x5x7x12 + x2x8x9x10 + x2x8x9x11 + x2x9x10x12

+ x2x9x11x12 + x3x4x8x9 + x3x4x9x12 + x4x7x8x9 + x4x7x9x12

+ x5x6x8x10 + x5x6x8x11 + x5x6x10x12 + x5x6x11x12.

The combining function F has the following properties:

(i) F is balanced;
(ii) F has algebraic degree 4;
(iii) F is correlation immune of order 8;
(iv) F has nonlinearity 3584;
(v) F has algebraic immunity 4;
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(vi) Each variable of F appears in at least one monomial of degree 4 such that the
shift register lengths corresponding to the variables in that monomial are pair-
wise relatively prime.

(vii) F has an efficient hardware implementation: 68 GE.

In the construction of the Boolean function F we made use of outstanding results
achieved by Tarannikov [33].

The above mentioned properties have the following bearing.

ad (i) A Boolean function f in n variables is called balanced if f(a) = 1 for exactly
2n−1 vectors a ∈ F

n
2 . Equivalently, if X1, . . . , Xn are independent symmetrically

distributed binary random variables, then the random variable Z = f(X1, . . . , Xn)
satisfies

Pr(Z = 1) =
1

2
.

ad (ii) According to Siegenthaler [32] the algebraic degree d of a balanced Boolean
function of n variables having order of correlation immunity c can be at most d =
n−c−1. Boolean functions satisfying this equation have been called optimized [22].
Only optimized Boolean functions can have maximum nonlinearity [33]. Here we
have d = 4, n = 13, and c = 8. Thus F is optimized.

ad (iii) A Boolean function f in n variables is correlation immune of order c if know-
ing the value of any c of the input variables of f gives no additional information on
the value of the output of f (see [32], [6]). Equivalently, if X1, . . . , Xn are indepen-
dent symmetrically distributed binary random variables and Z = f(X1, . . . , Xn),
then for any choice of k ≤ c random variables Xi1 , . . . , Xik we have

Pr(Xi1 = e1, . . . , Xik = ek | Z = 1) =
1

2k

for all (e1, . . . , ek) ∈ {0, 1}k. High order of correlation immunity is important to
counter correlation attacks.

ad (iv) The Hamming distance d(f, g) between two Boolean functions f and g in n
variables is defined by

d(f, g) =| {a ∈ F
n
2 : f(a) 6= g(a)} | .

The nonlinearity of f is defined by

NL(f) = min
l

d(f, l),

where l runs through all the 2n+1 affine functions in n variables. The maximum
possible value of the nonlinearity of a balanced Boolean function of n variables
having order of correlation immunity c is 2n−1 − 2c+1 for (2n − 7)/3 ≤ c ≤ n − 2
according to Tarannikov [33]. Here we have n = 13 and c = 8. Thus, the nonlinearity
of F is maximum. A high nonlinearity of the combining function is necessary to
counter correlation attacks.
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ad (v) A Boolean function f in n variables of degree d ≥ 1 has algebraic immunity
b if for each nonzero Boolean function h in n variables of degree less than b there
are a1, a2 ∈ F

n
2 with

f(a1)h(a1) 6= 0 and (f(a2) + 1)h(a2) 6= 0,

and b is the greatest integer having this property. Equivalently, if we regard f as an
element of the ring R = F2[x1, . . . , xn]/(x2

1 − x1, . . . , x
2
n − xn), then f has algebraic

immunity b if there are no nonzero polynomials h1, h2 ∈ R of degree less than b with

f ∗ h1 = 0 or (f + 1) ∗ h2 = 0,

where ∗ denotes the multiplication rule in R and 0 is the zero element of R, and where
b is the greatest integer for which this is true (see [24]). The algebraic immunity b
of a Boolean function f can never exceed the degree of the function. This is obvious
by considering the function h = f + 1, which has the same degree as f and which
satisfies f ∗ h = 0 in R. Here we have d = b = 4. Thus F has maximum algebraic
immunity. The algebraic immunity 4 of F is not really necessary. In order to counter
algebraic attacks it would be sufficient if the combining function F had algebraic
immunity 2.

ad (vi) This property is necessary in order to be able to prove a robustness property
of the keystream (see Section 4.3).

3.3 The combining function of ACHTERBAHN-80

The combining function G of ACHTERBAHN-80 is obtained from the combining
function F of ACHTERBAHN-128 by setting the first variable x0 and the last
variable x12 of F to zero:

G(x1, . . . , x11) = F (0, x1, . . . , x11, 0).

The algebraic normal form of G reads

G(x1, x2, . . . , x11) = x1 + x2 + x3 + x4 + x5 + x7 + x9 + x11 + x2x10 + x2x11

+ x4x8 + x5x6 + x6x8 + x6x10 + x6x11 + x7x8 + x8x9 + x8x10

+ x9x10 + x9x11 + x1x2x8 + x1x4x10 + x1x4x11 + x1x8x9

+ x1x9x10 + x1x9x11 + x2x3x8 + x2x4x8 + x2x4x10 + x2x4x11

+ x2x7x8 + x2x8x10 + x2x8x11 + x2x9x10 + x2x9x11 + x3x4x8

+ x3x8x9 + x4x7x8 + x4x8x9 + x5x6x8 + x5x6x10 + x5x6x11

+ x6x8x10 + x6x8x11 + x7x8x9 + x8x9x10 + x8x9x11 + x1x2x3x8

+ x1x2x7x8 + x1x3x5x8 + x1x3x8x9 + x1x4x8x10 + x1x4x8x11

+ x1x5x7x8 + x1x7x8x9 + x1x8x9x10 + x1x8x9x11 + x2x3x4x8

+ x2x3x5x8 + x2x4x7x8 + x2x4x8x10 + x2x4x8x11 + x2x5x7x8

+ x2x8x9x10 + x2x8x9x11 + x3x4x8x9 + x4x7x8x9 + x5x6x8x10

+ x5x6x8x11.

The combining function G has the following properties:
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(i) G is balanced;
(ii) G has algebraic degree 4;
(iii) G is correlation immune of order 6;
(iv) G has maximum nonlinearity 896;
(v) G has maximum algebraic immunity 4;
(vi) Each variable of G appears in at least one monomial of degree 4 such that the

shift register lengths corresponding to the variables in that monomial are pair-
wise relatively prime.

3.4 The feedback shift registers

All feedback shift registers deployed in the keystream generator of ACHTERBAHN-
128/80 are primitive and nonlinear. Each shift register is described by its feedback
function. We first give a description of the feedback functions in terms of logical gates
whose definition and hardware costs can be found in Table 2 in the Preliminaries.
The representations show that each feedback function can be implemented with
logical depth three using 2-input gates and 3-input gates only.

A0(x0, x1, . . . , x20) = XOR(XOR(x15, XOR(x0, x2, x3)),

XOR(AND(x4, x7), XOR(x5, x6, x8), MUX(x4, x5; x6)),

MUX(MUX(x11, x12; x2), AND(x2, x6, x13); MUX(x1, x10; x9)));

A1(x0, x1, . . . , x21) = XOR(XOR(x15, XOR(x0, x5, x8)),

XOR(AND(x5, x11), MUX(x13, x3; x1), MUX(x6, x4; x12)),

MUX(MUX(x1, x9; x7), MUX(x4, x12; x10); AND(x1, x11, x14)));

A2(x0, x1, . . . , x22) = XOR(XOR(x16, XOR(x0, x4, x13)),

XOR(AND(x12, x14), MUX(x1, x9; x7), MUX(x1, x4; x6)),

MUX(MUX(x5, x8; x11), MUX(x10, x3; x11); AND(x1, x9, x15)));

A3(x0, x1, . . . , x23) = XOR(XOR(x18, XOR(x0, x3, x8)),

XOR(AND(x1, x11), MUX(x2, x14; x13), MUX(x12, x4; x13)),

MUX(MUX(x6, x1; x15), MUX(x14, x16; x9); MAJ(x2, x5, x7)));

A4(x0, x1, . . . , x24) = XOR(XOR(x20, XOR(x0, x1, x11)),

XOR(AND(x4, x12), MUX(x1, x3; x5), MUX(x6, x7; x16)),

MUX(MAJ(x8, x15, x17), MUX(x14, x13; x12); MUX(x5, x3; x2)));

A5(x0, x1, . . . , x25) = XOR(XOR(x21, XOR(x15, x16, x17)),

XOR(XOR(x0, x4, x5), AND(x3, x6), MUX(x4, x18; x2)),

MUX(MUX(x4, x12; x13), MUX(x14, x11; x7); MAJ(x3, x10, x15)));

A6(x0, x1, . . . , x26) = XOR(XOR(x25, XOR(x0, x4, x15)),

XOR(AND(x1, x12), MUX(x10, x6; x17), MUX(x3, x8; x1)),

MUX(MUX(x10, x14; x13), MAJ(x2, x16, x17); AND(x5, x11, x18)));
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A7(x0, x1, . . . , x27) = XOR(XOR(x25, XOR(x0, x5, x18)),

XOR(AND(x4, x12), MUX(x1, x17; x2), MUX(x20, x14; x16)),

MUX(MUX(x18, x15; x10), AND(x1, x2, x13); AND(x7, x9, x19)));

A8(x0, x1, . . . , x28) = XOR(XOR(x24, XOR(x17, x18, x21)),

XOR(AND(x1, x4), XOR(x0, x2, x11), MUX(x10, x8; x21)),

MUX(AND(x8, x9, x18), MUX(x13, x6; x15); MUX(x19, x16; x14)));

A9(x0, x1, . . . , x29) = XOR(XOR(x28, XOR(x0, x1, x18)),

XOR(AND(x2, x8), MUX(x12, x19; x10), MUX(x10, x14; x22)),

MUX(MUX(x7, x18; x4), MAJ(x1, x9, x21); MAJ(x3, x5, x8)));

A10(x0, x1, . . . , x30) = XOR(XOR(x25, XOR(x6, x15, x18)),

XOR(XOR(x0, x2, x5), AND(x14, x19), MUX(x17, x12; x21)),

MUX(MUX(x20, x18; x8), MAJ(x4, x12, x19); MUX(x22, x7; x21)));

A11(x0, x1, . . . , x31) = XOR(XOR(x28, XOR(x8, x17, x22)),

XOR(AND(x13, x15), XOR(x0, x3, x5), MUX(x5, x7; x19)),

MUX(MUX(x8, x2; x13), AND(x4, x11, x24); MUX(x12, x14; x7)));

A12(x0, x1, . . . , x32) = XOR(XOR(x30, XOR(x9, x10, x23)),

XOR(XOR(x0, x2, x7), AND(x15, x16), MUX(x25, x15; x13)),

MUX(MUX(x15, x12; x16), MAJ(x1, x14, x18); MUX(x8, x24; x17))).

The algebraic normal forms of the feedback functions are given by:

A0(x0, x1, . . . , x20) = x0 + x2 + x3 + x4 + x5 + x6 + x8 + x11 + x15 + x1x11

+ x2x11 + x2x12 + x4x6 + x4x7 + x5x6 + x1x2x11 + x1x2x12

+ x1x9x11 + x9x10x11 + x1x2x6x13 + x1x2x9x11 + x1x2x9x12

+ x2x9x10x11 + x2x9x10x12 + x1x2x6x9x13 + x2x6x9x10x13;

A1(x0, x1, . . . , x21) = x0 + x1 + x5 + x6 + x8 + x13 + x15 + x1x3 + x1x7

+ x1x13 + x4x12 + x5x11 + x6x12 + x7x9 + x1x11x14

+ x1x4x11x14 + x1x7x11x14 + x1x4x10x11x14 + x1x7x9x11x14

+ x1x10x11x12x14;

A2(x0, x1, . . . , x22) = x0 + x4 + x5 + x13 + x16 + x1x6 + x1x7 + x4x6 + x5x11

+ x7x9 + x8x11 + x12x14 + x1x5x9x15 + x1x9x10x15 + x1x3x9x11x15

+ x1x5x9x11x15 + x1x8x9x11x15 + x1x9x10x11x15;

A3(x0, x1, . . . , x23) = x0 + x2 + x3 + x6 + x8 + x12 + x18 + x1x11 + x1x15

+ x2x13 + x4x13 + x6x15 + x12x13 + x13x14 + x2x5x6 + x2x5x14

+ x2x6x7 + x2x7x14 + x5x6x7 + x5x7x14 + x1x2x5x15 + x1x2x7x15

+ x1x5x7x15 + x2x5x6x15 + x2x5x9x14 + x2x5x9x16 + x2x6x7x15

+ x2x7x9x14 + x2x7x9x16 + x5x6x7x15 + x5x7x9x14 + x5x7x9x16;
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A4(x0, x1, . . . , x24) = x0 + x6 + x11 + x20 + x1x5 + x3x5 + x4x12 + x5x14 + x6x16

+ x7x16 + x8x15 + x8x17 + x15x17 + x2x3x14 + x2x5x14 + x5x8x15

+ x5x8x17 + x5x12x13 + x5x12x14 + x5x15x17 + x2x3x8x15

+ x2x3x8x17 + x2x3x12x13 + x2x3x12x14 + x2x3x15x17 + x2x5x8x15

+ x2x5x8x17 + x2x5x12x13 + x2x5x12x14 + x2x5x15x17;

A5(x0, x1, . . . , x25) = x0 + x4 + x5 + x15 + x16 + x17 + x21 + x2x4 + x2x18

+ x3x6 + x4x13 + x12x13 + x3x4x10 + x3x4x15 + x3x10x14

+ x3x14x15 + x4x10x15 + x10x14x15 + x3x4x10x13 + x3x4x13x15

+ x3x7x10x11 + x3x7x10x14 + x3x7x11x15 + x3x7x14x15

+ x3x10x12x13 + x3x12x13x15 + x4x10x13x15 + x7x10x11x15

+ x7x10x14x15 + x10x12x13x15;

A6(x0, x1, . . . , x26) = x0 + x3 + x4 + x15 + x25 + x1x3 + x1x8 + x1x12 + x6x17

+ x10x13 + x10x17 + x13x14 + x5x10x11x18 + x2x5x11x16x18

+ x2x5x11x17x18 + x5x10x11x13x18 + x5x11x13x14x18

+ x5x11x16x17x18;

A7(x0, x1, . . . , x27) = x0 + x1 + x5 + x20 + x25 + x1x2 + x2x17 + x4x12 + x10x15

+ x10x18 + x14x16 + x16x20 + x7x9x18x19 + x7x9x10x15x19

+ x7x9x10x18x19 + x1x2x7x9x13x19;

A8(x0, x1, . . . , x28) = x0 + x2 + x10 + x11 + x17 + x18 + x21 + x24 + x1x4 + x8x21

+ x10x21 + x13x19 + x6x15x19 + x8x9x18 + x13x14x16 + x13x14x19

+ x13x15x19 + x6x14x15x16 + x6x14x15x19 + x8x9x18x19

+ x13x14x15x16 + x13x14x15x19 + x8x9x14x16x18 + x8x9x14x18x19;

A9(x0, x1, . . . , x29) = x0 + x1 + x7 + x10 + x12 + x18 + x28 + x2x8 + x4x7 + x4x18

+ x10x12 + x10x19 + x10x22 + x14x22 + x3x5x7 + x3x7x8 + x5x7x8

+ x1x3x5x9 + x1x3x5x21 + x1x3x8x9 + x1x3x8x21 + x1x5x8x9

+ x1x5x8x21 + x3x4x5x7 + x3x4x5x18 + x3x4x7x8 + x3x4x8x18

+ x3x5x9x21 + x3x8x9x21 + x4x5x7x8 + x4x5x8x18 + x5x8x9x21;

A10(x0, x1, . . . , x30) = x0 + x2 + x5 + x6 + x15 + x17 + x18 + x20 + x25 + x8x18

+ x8x20 + x12x21 + x14x19 + x17x21 + x20x22 + x4x12x22 + x4x19x22

+ x7x20x21 + x8x18x22 + x8x20x22 + x12x19x22 + x20x21x22

+ x4x7x12x21 + x4x7x19x21 + x4x12x21x22 + x4x19x21x22

+ x7x8x18x21 + x7x8x20x21 + x7x12x19x21 + x8x18x21x22

+ x8x20x21x22 + x12x19x21x22;

A11(x0, x1, . . . , x31) = x0 + x3 + x17 + x22 + x28 + x2x13 + x5x19 + x7x19 + x8x12

+ x8x13 + x13x15 + x2x12x13 + x7x8x12 + x7x8x14 + x8x12x13

+ x2x7x12x13 + x2x7x13x14 + x4x11x12x24 + x7x8x12x13

+ x7x8x13x14 + x4x7x11x12x24 + x4x7x11x14x24;
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A12(x0, x1, . . . , x32) = x0 + x2 + x7 + x9 + x10 + x15 + x23 + x25 + x30 + x8x15

+ x12x16 + x13x15 + x13x25 + x1x8x14 + x1x8x18 + x8x12x16

+ x8x14x18 + x8x15x16 + x8x15x17 + x15x17x24 + x1x8x14x17

+ x1x8x17x18 + x1x14x17x24 + x1x17x18x24 + x8x12x16x17

+ x8x14x17x18 + x8x15x16x17 + x12x16x17x24 + x14x17x18x24

+ x15x16x17x24.

Table 4 contains some properties of the shift registers Aj. Implementation related
properties of the feedback shift registers can be found in Table 5.

Aj Nj Lj LProb,j vj dj cj NL(Aj) Diffusion λj

A0 21 221 − 5 > 220 15 5 3 14336 46

A1 22 222 − 4 > 221 15 5 3 15360 48

A2 23 223 − 2 > 222 16 5 3 30720 51

A3 24 224 − 2 > 223 17 4 4 61440 51

A4 25 > 224.8 > 224 17 4 4 59392 48

A5 26 > 224.8 > 225 17 4 5 59392 52

A6 27 > 224.8 > 226 18 5 4 116736 51

A7 28 > 224.8 > 227 18 6 4 123904 53

A8 29 > 224.8 > 228 18 5 4 118784 58

A9 30 > 224.8 > 229 17 4 3 62464 58

A10 31 > 224.8 > 230 17 4 6 61440 61

A11 32 > 224.8 > 231 17 5 4 57344 64

A12 33 > 224.8 > 232 18 4 6 114688 54

Table 4: Properties of feedback shift registers

Nj is the length of the shift register Aj.

Lj is the linear complexity of the shift register Aj (i.e., the linear complexity of
any nonzero output sequence of Aj). This number has been computed with the
Berlekamp-Massey algorithm.

LProb,j is a lower bound for the linear complexity of the shift register Aj that has
been determined by Algorithm B in Section 2.3 and which holds with probability
> 1 − 2−100.

vj is the number of variables that occur explicitly in the algebraic normal form of
the feedback function Aj.

dj is the algebraic degree of Aj.

cj is the order of correlation immunity of the feedback function Aj.
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NL(Aj) is the nonlinearity of the feedback function Aj.

The diffusion parameter λj is the minimum number of clock cycles needed in order
to transform any two initial states of the shift register Aj of Hamming distance
1 into shift register states of Hamming distance close to Nj/2. This parameter is
determined experimentally. The diffusion parameter of a shift register should not
be greater than 2.5 times the length of the shift register in order to provide short
resynchronization times.

Shift register
Aj

Number of
taps

Design size
in GE

Logical depth
of 1-bit impl.

Logical depth
of 8-bit impl.

A0 15 31.00 3 5

A1 15 29.50 3 5

A2 16 28.75 3 5

A3 17 30.25 3 5

A4 17 30.25 3 5

A5 17 31.75 3 5

A6 18 29.25 3 5

A7 18 28.50 3 5

A8 18 31.00 3 5

A9 17 30.00 3 5

A10 17 31.75 3 5

A11 17 31.00 3 5

A12 18 31.75 3 5

Table 5: Hardware properties of shift registers
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3.5 The key-loading algorithm

ACHTERBAHN-80 can be used with key lengths 40, 48, 56, 64, 72, and 80. All
IV -lengths between 0 and 80 can be used provided that the IV -length is divisible
by eight. ACHTERBAHN-128 accommodates all key lengths between 40 and 128
and all IV -lengths between 0 and 128 that are multiples of eight. We shall use the
letters k and l to denote the key and IV length, respectively. Assume that the secret
key K is given as the bit string K = u0u1 . . . uk−1, and that the initial value (or
initial vector) is given as IV = v0v1 . . . vl−1. The key and IV -loading algorithm is
defined as follows:

Step 1. The memory cells D0, D1, . . . , DNj−1 of the shift register Aj are filled with
the first Nj key bits u0, u1, . . . , uNj−1. This is done for all thirteen shift registers in
the keystream generator of ACHTERBAHN-128 and for all eleven shift registers in
the keystream generator of ACHTERBAHN-80.

Step 2. Into each shift register Aj the remaining k−Nj key bits uNj
, uNj+1, . . . , uk−1

are introduced, one after the other, according to Figure 4.

Step 3. Into each shift register Aj all l initial value bits v0, v1, . . . , vl−1 are intro-
duced in the same way as already described for the key bits in Step 2.

Step 4. Each shift register Aj emits one bit. The thirteen emitted bits are then
compressed by the Boolean combining function F into one output bit. This output
bit is immediately fed back into each shift register as depicted in Figure 4. The
same output bit is fed into all thirteen shift registers. This operation is repeated 32
times. In the case of ACHTERBAHN-80, of course, only the eleven shift registers
A1, . . . , A11 are involved and the used combining function is the function G defined
in Section 3.3. Recall that the output bit of the shift register Aj at a particular time
is defined to be the content of the shift register’s memory cell DNj−16 at that time.

Step 5. The content of the memory cell D0 in each shift register Aj is overwritten
with a 1. This operation makes sure that none of the shift registers gets initialized
with the all zero state.

Step 6. Each shift Aj is clocked 64 times without emitting any output bit (warm-
up).
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Figure 4: Bitwise introduction of key or IV -bits into a shift register

The states of the shift registers Aj at the end of Step 6 define the initial state of
the keystream generator.
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Step 1 can be implemented in different ways. We discuss two possible imple-
mentations. The first implementation aims to minimize the hardware costs of the
keystream generator but leads to longer resynchronization times and provides less
resistance to simple power analysis (SPA) attacks. In this implementation the first
Nj key bits u0, u1, . . . , uNj−1 are shifted into shift register Aj, bit by bit, according
to Figure 5. It takes Nj clock cycles to get the key bits u0, u1, . . . , uNj−1 into the
register Aj by this method.

In the second implementation of Step 1, the first 16 key bits u0, u1, . . . , u15 are
loaded simultaneously into each shift register Aj. The key bit ui is loaded into
cell DNj−16+i for 0 ≤ i ≤ 15. Then the key bits u16, u17, . . . , uNj−1 are shifted into
register Aj according to Figure 5. This method requires 1 + Nj − 16 clock cycles to
fill the cells of the register Aj with the first Nj key bits.

The hardware costs of the second implementation of Step 1 are higher, since the
16 right-most flip-flops of each shift register must be scan flip-flops or one has to
implement extra multiplexors. See the discussion at the end of Section 2.4.
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Figure 5: Bitwise introduction of the first N key bits into the shift register

The tasks of Steps 2, 3, 4, and 6 require k − Nj, l, 32, and 64 clock cycles,
respectively. The task of Step 5 can be performed at the beginning of Step 6 in
a way that no extra clock cycle is required. Thus Step 5 is counted with 0 clock
cycles. To summarize, we obtain the following key/IV -loading times.

Fact 4. The number of clock cycles needed to load a secret key of length k and
an initial value of length l into the keystream generator of ACHTERBAHN-128 or
ACHTERBAHN-80 is given by

tresync.1 = 1 +
k + l + 80

q

if in Step 1 the first 16 key bits are loaded simultaneously into each shift register Aj.
Otherwise we have

tresync.2 =
k + l + 96

q
.

Here q ∈ {1, 2, 4, 8} is the degree of parallelization.

Remark. Notice that Steps 1 and 2 depend only on the secret key K. This offers the
possibility to reduce resynchronization times in some applications. The background

22



is that the secret key K remains constant for a longer period in time while the
initial value IV changes frequently. The idea is to carry out Steps 1 and 2 only
once for each key K and save the thus derived state of the keystream generator
at the end of Step 2 in some external memory. If resynchronization is requested
the state of the keystream generator at the end of Step 2 can be restored in an
instant, so that the resynchronization time reduces to the time needed to perform
the tasks in Steps 3 − 6. We speak of pure resynchronization times if we refer to
the time necessary to carry out Steps 3 − 6. The pure resynchronization times for
ACHTERBAHN-128 and ACHTERBAHN-80 are given by

tresync.3 = 1 +
l + 96

q
.
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4 Structural Properties

4.1 Linear complexity of keystream

It is well known [35], [16] that the linear complexity of the sum of two periodic
sequences (with elements in a finite field) can never exceed the sum of the linear
complexities of the sequences. Similarly, the linear complexity of the product of two
periodic sequences cannot be greater than the product of the linear complexities of
the sequences. In particular, if σ and τ are periodic sequences in F

∞
2 , then

L(σ + τ) ≤ L(σ) + L(τ) and L(στ) ≤ L(σ)L(τ). (6)

The keystream ζ of ACHTERBAHN-128 can be seen as the sum of several different
periodic sequences most of which are the product of two, three or four sequences:

ζ = F (σ0, σ1, . . . , σ12) = σ0 + σ1 + σ2 + · · · + σ5σ6σ11σ12. (7)

For j = 0, 1, . . . , 12, sequence σj is a nonzero output sequence of the FSR Aj of
length Nj. The linear complexity of σj satisfies L(σj) = Lj ≤ 2Nj − 2 for all j.
Using now the inequalities (6), we obtain an upper bound for the linear complexity
of the keystream:

L(ζ) ≤ F (L0, L1, . . . , L12) ≤ F (2N0 − 2, 2N1 − 2, . . . , 2N12 − 2) < 2121.

Here the function F is, of course, evaluated over the integers rather than over F2.
In the same way, for the keystream ζ generated by ACHTERBAHN-80, we find

L(ζ) ≤ G(L1, L2, . . . , L11) ≤ G(2N1 − 2, 2N2 − 2, . . . , 2N11 − 2) < 2119.

Before we can establish lower bounds for the linear complexities of the keystreams
of ACHTERBAHN-128 and ACHTERBAHN-80, we need some auxiliary results.

We first recall some results from Selmer [30, Chap. 4], and Zierler and Mills [35].
Let f, g, . . . , h be nonconstant binary polynomials without multiple roots in their
respective splitting fields over F2 and with nonzero constant terms. Then f∨g∨· · ·∨h
is defined to be the polynomial whose roots are the distinct3 products αβ · · ·γ, where
α is a root of f , β a root of g, and γ a root of h. The polynomial f ∨ g ∨ · · · ∨ h
is again a polynomial over the ground field F2. This follows from the fact that all
conjugates (over F2) of a root of f ∨ g ∨ · · · ∨ h are roots of f ∨ g ∨ · · · ∨ h.

Lemma 2. Let f, g, . . . , h be irreducible binary polynomials with f(0)g(0) · · ·h(0) 6=
0 (i.e., none of the polynomials is equal to the irreducible polynomial p(x) = x). Let
the canonical factorization of f ∨ g ∨ · · · ∨ h over F2 be given by

f ∨ g ∨ · · · ∨ h = b1 · · · bd.

Then, for j = 1, . . . , d, the degree of each polynomial bj divides

l = lcm(deg(f), deg(g), . . . , deg(h)).

3This is the definition of Zierler and Mills. Selmer defined the operation slightly different in so
far that he defined f ∨g (he used the notation f§ g) as the polynomial whose roots are all products
αβ, where α is a root of f and β a root of g. The roots of f§ g are then not necessarily distinct.
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Proof. All roots of f ∨ g ∨ · · · ∨ h lie in the splitting field of the polynomial fg · · ·h,
which is the finite field F2l. Consider an arbitrary root γ of f ∨ g ∨ · · · ∨ h. Let
b ∈ F2[x] be the minimal polynomial of γ (i.e., the uniquely determined irreducible
polynomial in F2[x] which has γ as a root). Then deg(b) divides l and the assertion
follows.

Lemma 3. Let f, g, . . . , h be binary polynomials without multiple roots and with
nonzero constant terms. The polynomial f ∨ g ∨ · · · ∨ h ∈ F2[x] is irreducible if and
only if the polynomials f, g, . . . , h are all irreducible and of pairwise relatively prime
degrees. In this case

deg(f ∨ g ∨ · · · ∨ h) = deg(f) deg(g) · · ·deg(h).

Proof. See Selmer [30, Chap. 4].

Lemma 4. Let f, g, . . . , h be irreducible binary polynomials with f(0)g(0) · · ·h(0) 6=
0. Let σ = (sn)∞n=0, τ = (tn)∞n=0, . . . , υ = (un)

∞
n=0 be binary periodic sequences with

minimal polynomials f, g, . . . , h, respectively. Then f ∨ g∨ · · ·∨h is a characteristic
polynomial of the product sequence στ · · ·υ = (sntn · · ·un)∞n=0.

Proof. See Lidl and Niederreiter [21, Chap. 8] or Zierler and Mills [35].

Lemma 5. Let f, g, . . . , h be irreducible binary polynomials of pairwise relatively
prime degrees and with f(0)g(0) · · ·h(0) 6= 0. Let σ = (sn)∞n=0, τ = (tn)∞n=0, . . . , υ =
(un)∞n=0 be binary periodic sequences with minimal polynomials f, g, . . . , h, respec-
tively. Then f ∨ g ∨ · · · ∨ h is the minimal polynomial of στ · · ·υ = (sntn · · ·un)

∞
n=0.

Proof. See Selmer [30, Chap. 4].

Lemma 6. Let S, T, . . . , U be positive integers. Let σ = (sn)∞n=0, τ = (tn)∞n=0, . . . ,
υ = (un)∞n=0 be binary periodic sequences with per(σ) = 2S −1, per(τ) = 2T −1, . . . ,
per(υ) = 2U − 1. Let the canonical factorization over F2 of the minimal polynomial
of στ · · ·υ = (sntn · · ·un)

∞
n=0 be

mστ ···υ = c1c2 · · · ck.

Then deg(cj) divides lcm(S, T, . . . , U) for j = 1, . . . , k.

Proof. Consider the minimal polynomials of σ, τ, . . . , υ, and their canonical factor-
izations over F2:

mσ =

s
∏

i=1

fi, mτ =

t
∏

j=1

gj, . . . , mυ =

u
∏

k=1

hk.

By Proposition 4A (see Appendix A), we can write σ as the sum of sequences σi

such that σi has minimal polynomial fi, 1 ≤ i ≤ s. The sequences τ, . . . , υ can be
decomposed similarly. Thus we can write

σ =

s
∑

i=1

σi, τ =

t
∑

j=1

τj, . . . , υ =

u
∑

k=1

υk,
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which implies that

στ · · ·υ =

s
∑

i=1

t
∑

j=1

· · ·

u
∑

k=1

σiτj · · ·υk.

By Lemma 4, each sequence σiτj · · ·υk has fi∨gj∨· · ·∨hk as a characteristic polyno-
mial. It is well known, and easy to show, that the sum of a finite number of periodic
sequences has as a characteristic polynomial the least common multiple of the char-
acteristic polynomials of the individual sequences (see e.g., [21, Theorem 8.55]). It
therefore follows that

c = lcm({fi ∨ gj ∨ · · · ∨ hk : 1 ≤ i ≤ s, 1 ≤ j ≤ t, . . . , 1 ≤ k ≤ u}) (8)

is a characteristic polynomial of the product sequence στ · · ·υ.
Consider an arbitrary but fixed polynomial fi ∨ gj ∨ · · · ∨ hk. By Lemma 2,

fi ∨ gj ∨ · · · ∨ hk is the product of distinct irreducible binary polynomials whose
degrees divide lcm(deg(fi), deg(gj), . . . , deg(hk)). By Lemma 1, deg(fi) divides S,
deg(gj) divides T , . . . , deg(hk) divides U . It follows that all irreducible factors
of the polynomial fi ∨ gj ∨ · · · ∨ hk have degrees dividing lcm(S, T, . . . , U). Since
each polynomial fi ∨ gj ∨ · · · ∨ hk, 1 ≤ i ≤ s, 1 ≤ j ≤ t, . . . , 1 ≤ k ≤ u, has
this property, we conclude that the characteristic polynomial c ∈ F2[x] of στ · · ·υ
in (8) is the product of distinct irreducible binary polynomials whose degrees divide
lcm(S, T, . . . , U). Since the minimal polynomial of a periodic sequence divides any
characteristic polynomial of the sequence, the proof is complete.

Lemma 7. Let S, T, . . . , U be pairwise relatively prime integers greater than 1. Let
σ = (sn)∞n=0, τ = (tn)∞n=0, . . . , υ = (un)

∞
n=0 be binary periodic sequences of least

periods 2S − 1, 2T − 1, . . . , 2U − 1, respectively. If the canonical factorizations over
F2 of the minimal polynomials of σ, τ, . . . , υ are

mσ =

s
∏

i=1

fi, mτ =

t
∏

j=1

gj, . . . , mυ =

u
∏

k=1

hk, (9)

then the minimal polynomial of στ · · ·υ = (sntn · · ·un)
∞
n=0 is given by

mστ ···υ =
s

∏

i=1

t
∏

j=1

· · ·
u

∏

k=1

(fi ∨ gj ∨ · · · ∨ hk). (10)

In fact, this is the canonical factorization of the minimal polynomial of στ · · ·υ in
F2[x].

Proof. See Appendix A or [8, Lemma 7].

The following corollary to Lemma 7 is also a special case of Golić [14, Theorem 3]
and of Rueppel and Staffelbach [29, Theorem 4].

Corollary 1. Let σ, τ, . . . , υ be binary periodic sequences of least periods 2S − 1,
2T − 1, . . . , 2U − 1, and linear complexities L(σ), L(τ), . . . , L(υ), respectively. If
the integers S, T, . . . , U are pairwise relatively prime and greater than 1, then the
product sequence στ · · ·υ has linear complexity

L(στ · · ·υ) = L(σ)L(τ) · · ·L(υ).
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Proof. Let the minimal polynomials of the sequences σ, τ, . . . , υ be given by the
expressions in (9). Using Lemma 3, Lemma 7, and L(στ · · ·υ) = deg(mστ ···υ), we
get

L(στ · · ·υ) =

s
∑

i=1

t
∑

j=1

· · ·

u
∑

k=1

deg(fi ∨ gj ∨ · · · ∨ hk)

=

s
∑

i=1

t
∑

j=1

· · ·

u
∑

k=1

(deg(fi) deg(gj) · · ·deg(hk))

=

( s
∑

i=1

deg(fi)

)( t
∑

j=1

deg(gj)

)

· · ·

( u
∑

k=1

deg(hk)

)

= L(σ)L(τ) · · ·L(υ).

Theorem 1. The linear complexity of the keystream ζ of ACHTERBAHN-128 is
lower bounded by

L2L8L10(L4 + L9 − 59) ≤ L(ζ).

Using the fact that L2 = 223 − 2 and Lj ≥ 224.8 for 4 ≤ j ≤ 12 (results derived by
means of the Berlekamp-Massey algorithm), we get

L(ζ) > 298.

Using Lj ≥ 2Nj−1 for j ≥ 4 (probabilistic estimation derived by means of Algo-
rithm B in Section 2.3), we obtain

L(ζ) > 2110.

The same lower bounds hold for the keystream of ACHTERBAHN-80.

Proof. Consider the algebraic normal form of the Boolean combining function F (x0,
x1, . . . , x12) of ACHTERBAHN-128 as specified in Section 3.2. The algebraic normal
form of the function contains 124 monomials, among them the three monomials:

x2x8x10, x2x4x8x10, x2x8x9x10. (11)

Notice that each monomial contains the variables x2, x8, and x10. The shift register
lengths corresponding to these variables are N2 = 23, N8 = 29, and N10 = 31. The
keystream ζ = F (σ0, σ1, . . . , σ12) is the sum of 124 different sequences. The three
sequences that correspond to the monomials in (11) are

σ2σ8σ10, σ2σ4σ8σ10, σ2σ8σ9σ10. (12)

Let the minimal polynomials m2, m8, m10 of the sequences σ2, σ8, σ10 be given by
their respective canonical factorizations

m2 =

d2
∏

i2=1

f
(2)
i2

, m8 =

d8
∏

i8=1

f
(8)
i8

, m10 =

d10
∏

i10=1

f
(10)
i10

.
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By Lemma 1 all (irreducible) polynomials f
(2)
i2

have degree 23, all polynomials f
(8)
i8

have degree 29, and all polynomials f
(10)
i10

have degree 31. It follows now from
Lemma 7 that the minimal polynomial of the sequence σ2σ8σ10 consists of d2d8d10

distinct irreducible binary polynomials all of which have degree 23 · 29 · 31 = 20677.
Lemma 7, in conjunction with Lemma 3, implies that all irreducible factors of the
minimal polynomials of σ2σ4σ8σ10 and σ2σ8σ9σ10 have degrees divisible by 20677.

The three monomials in (11) are the only monomials in the algebraic normal
form of F containing all three variables x2, x8, and x10 simultaneously. It follows
then from Lemma 6 and Lemma 7 that among the 124 sequences appearing in the
sum (7), the three sequences in (12) are the only ones whose minimal polynomials
contain irreducible factors whose degrees are multiples of 20677. In other words,
the minimal polynomials of the three sequences in (12) are relatively prime to the
minimal polynomials of the other 121 sequences in (7). It follows that the minimal
polynomial mω of

ω = σ2σ8σ10 + σ2σ4σ8σ10 + σ2σ8σ9σ10 (13)

divides the minimal polynomial mζ of the keystream ζ. Hence, deg(mω) yields a
lower bound for the linear complexity of ζ. Consider the minimal polynomials m4

and m9 of the sequences σ4 and σ9:

m4 =

d4
∏

i4=1

f
(4)
i4

and m9 =

d9
∏

i9=1

f
(9)
i9

.

The sequence σ4 is a nonzero output sequence of the primitive shift register A4 of
length N4 = 25. Therefore, by Lemma 1, the irreducible polynomials f

(4)
i4

have either
degree 5 or degree 25. By the same lemma, as σ9 is the nonzero output sequence
of a primitive FSR of length N9 = 30, we have deg(f

(9)
i9

) ∈ {2, 3, 5, 6, 10, 15, 30} for
1 ≤ i9 ≤ d9.

According to Lemma 7, the canonical factorization of the minimal polynomial of
σ2σ4σ8σ10 is given by

mσ2σ4σ8σ10 =

d2
∏

i2=1

d4
∏

i4=1

d8
∏

i8=1

d10
∏

i10=1

(

f
(2)
i2

∨ f
(4)
i4

∨ f
(8)
i8

∨ f
(10)
i10

)

.

The d2d4d8d10 distinct irreducible factors can have two different degrees:

deg
(

f
(2)
i2

∨ f
(4)
i4

∨ f
(8)
i8

∨ f
(10)
i10

)

=

{

23 · 5 · 29 · 31 = 103385,

23 · 25 · 29 · 31 = 516925.

The minimal polynomial of σ2σ8σ9σ10 is

mσ2σ8σ9σ10 =

d2
∏

i2=1

d8
∏

i8=1

d9
∏

i9=1

d10
∏

i10=1

(

f
(2)
i2

∨ f
(8)
i8

∨ f
(9)
i9

∨ f
(10)
i10

)

.
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There are seven possible values for the degrees of the irreducible factors:

deg
(

f
(2)
i2

∨ f
(8)
i8

∨ f
(9)
i9

∨ f
(10)
i10

)

=



















































23 · 29 · 2 · 31 = 41354,

23 · 29 · 3 · 31 = 62031,

23 · 29 · 5 · 31 = 103385,

23 · 29 · 6 · 31 = 124062,

23 · 29 · 10 · 31 = 206770,

23 · 29 · 15 · 31 = 310155,

23 · 29 · 30 · 31 = 620310.

Let us separate the d2d8d9d10 irreducible polynomials f
(2)
i2

∨ f
(8)
i8

∨ f
(9)
i9

∨ f
(10)
i10

, 1 ≤
ij ≤ dj, j = 2, 8, 9, 10, into seven equivalence classes such that the polynomials in
each class have the same degree. Since there are six irreducible binary polynomials
of degree 5, the equivalence class containing all polynomials of degree 103385 can
contain at most 6 d2d8d10 different polynomials. Some, or all, of these polynomi-
als might also appear in the canonical factorization of the minimal polynomial of
σ2σ4σ8σ10. Therefore,

deg(gcd(mσ2σ4σ8σ10 , mσ2σ8σ9σ10)) ≤ 6 d2d8d10 · 103385

= 30 · (23 d2)(29 d8)(31 d10) = 30 L2L8L10.
(14)

Consider the sequence ω in (13). Since the minimal polynomial of σ2σ8σ10 has
only irreducible factors of degree 20677, it is relatively prime to both mσ2σ4σ8σ10 , and
to mσ2σ8σ9σ10 . In order to get information about the minimal polynomial of the sum
σ2σ4σ8σ10 + σ2σ8σ9σ10, recall that every binary periodic sequence can be identified
with a rational function of F2(x) (see Appendix A). If the rational function that
corresponds to the periodic sequence is in reduced form (numerator and denomina-
tor are relatively prime), then the polynomial in the denominator is the minimal
polynomial of the sequence. The sum of two reduced rational functions with de-
nominator polynomials a and b is a reduced rational function whose denominator
polynomial is a multiple of lcm(a, b)/ gcd(a, b). Therefore, the minimal polynomial
of the sum σ2σ4σ8σ10 + σ2σ8σ9σ10 is a multiple of the polynomial

lcm(mσ2σ4σ8σ10 , mσ2σ8σ9σ10)

gcd(mσ2σ4σ8σ10 , mσ2σ8σ9σ10)
=

mσ2σ4σ8σ10 · mσ2σ8σ9σ10

(gcd(mσ2σ4σ8σ10 , mσ2σ8σ9σ10))
2
.

Combining these facts, we get

L(ζ) ≥ deg(mω) ≥ deg(mσ2σ8σ10) + deg(mσ2σ4σ8σ10) + deg(mσ2σ8σ9σ10)

− 2 deg(gcd(mσ2σ4σ8σ10 , mσ2σ8σ9σ10)).

Using Corollary 1 and (14), we obtain

L(ζ) ≥ L2L8L10 + L2L4L8L10 + L2L8L9L10 − 60 L2L8L10

= L2L8L10(L4 + L9 − 59).

The derived lower bound for the linear complexity holds also for the keystream of
ACHTERBAHN-80. This is immediate from the fact that the algebraic normal form
of the combining function G of ACHTERBAHN-80 contains the three monomials
in (11), and only monomials that appear in the algebraic normal form of F , the
combining function of ACHTERBAHN-128.
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4.2 Period of keystream

Let f be a nonzero binary polynomial with f(0) 6= 0. The least positive integer e
for which f(x) divides xe − 1 is called the order of f and denoted by ord(f). If
f ∈ F2[x] has degree d, then ord(f) ≤ 2d−1. If f is irreducible, then ord(f) is equal
to the order of any root of f in the multiplicative group F

∗
2d of all nonzero elements

of the finite field F2d, so that ord(f) divides 2d − 1 in this case. The polynomial
f is primitive if and only if ord(f) = 2d − 1. See [21, Chap. 3, Sec. 1] for more
information.

The concept of the order of a polynomial comes into play for the following reason:
If σ is a binary periodic sequence with minimal polynomial mσ, then the least period
of σ is equal to the order of the minimal polynomial of σ (see [21, Theorem 8.44]).
This fact will be used in the proof of the next theorem. We shall also need the
following two lemmas.

Lemma 8. Let g1, . . . , gk be pairwise relatively prime nonzero polynomials over F2

with g1(0) · · ·gk(0) 6= 0, and let h = g1 · · · gk. Then

ord(h) = lcm(ord(g1), . . . , ord(gk)).

Proof. See [21, Theorem 3.9].

Lemma 9. Let f, g, . . . , h be irreducible binary polynomials of pairwise relatively
prime degrees and with f(0)g(0) · · ·h(0) 6= 0. Then

ord(f ∨ g ∨ · · · ∨ h) = ord(f) ord(g) · · ·ord(h).

Proof. It suffices to prove the assertion for two polynomials f, g ∈ F2[x]. Let
deg(f) = a, and let α ∈ F2a be a root of f . Since f is irreducible, ord(f) coin-
cides with the order of α as an element of the group F

∗
2a, the multiplicative group

formed by all nonzero elements of F2a. The order of any element of F
∗
2a divides

the order of the group F
∗
2a, which is 2a − 1. Let deg(g) = b, and let β ∈ F2b be

a root of g. Then, by the same argument, we conclude that the order of β in F
∗
2b

is equal to ord(g) and both numbers divide 2b − 1. By hypothesis, the greatest
common divisor of a and b is 1, so that gcd(2a − 1, 2b − 1) = 1. It follows that α
and β are elements of relatively prime orders in the group F

∗
2ab. By Lemma 3, the

polynomial f ∨ g is irreducible over F2. Thus the order of the polynomial f ∨ g
is equal to the order of γ = αβ in F

∗
2ab. It is well known (see e.g., McEliece [23,

p. 38]) that the order of the product of two elements in a commutative group is the
product of the orders of the two elements if these orders are relatively prime. Hence
ord(f ∨ g) = ord(αβ) = ord(α) ord(β) = ord(f) ord(g).

Theorem 2. The least period of the keystream ζ of ACHTERBAHN-128 is

per(ζ) = lcm(2N0 − 1, 2N1 − 1, . . . , 2N12 − 1) > 2298,

where Nj = 21 + j are the lengths of the shift registers Aj, j = 0, 1, . . . , 12,. The
least period of the keystream of ACHTERBAHN-80 is given by

per(ζ) = lcm(2N1 − 1, 2N2 − 1, . . . , 2N11 − 1) > 2268.
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Proof. Clearly, the least period of the keystream ζ produced by the keystream gener-
ator of ACHTERBAHN-128 cannot be greater than the least common multiple of the
least periods of the individual nonzero shift register output sequences σ0, σ1, . . . , σ12.
In other words,

per(ζ) ≤ lcm(2N0 − 1, 2N1 − 1, . . . , 2N12 − 1).

We shall show that equality holds.
The algebraic normal form of the combining function F (x0, x1, . . . , x12) of

ACHTERBAHN-128 contains the seven monomials

x0x5x8x10, x1x4x8x10, x2x3x4x8, x2x4x7x8,

x2x4x11x12, x2x8x9x10, x5x6x8x10.

Notice that each variable x0, x1, . . . , x12 occurs in at least one of those monomials.
For each of the monomials, the lengths of the shift registers corresponding to the
variables in the monomial are pairwise relatively prime. For example, for the first
monomial we have N0 = 21, N5 = 26, N8 = 29, and N10 = 31.

For j = 0, 1, . . . , 12, let fj ∈ F2[x] be a primitive polynomial of degree Nj which
divides the minimal polynomial mj of the shift register Aj. (We can find such
primitive polynomials fj even if we do not know the minimal polynomial mj using
Algorithm A in Section 2.3.)

The selected seven monomials give rise to the following seven product sequences

σ0σ5σ8σ10, σ1σ4σ8σ10, σ2σ3σ4σ8, σ2σ4σ7σ8,

σ2σ4σ11σ12, σ2σ8σ9σ10, σ5σ6σ8σ10,
(15)

which appear among the sequences in

ζ = F (σ0, σ1, . . . , σ12) = σ0 + σ1 + σ2 + · · · + σ5σ6σ11σ12. (16)

For each of the sequences in (15) we know the structure of its minimal polynomial by
Lemma 7. In particular, we know that the minimal polynomial of the first sequence
σ0σ5σ8σ10 contains the irreducible polynomial g1 = f0∨f5∨f8∨f10 as a factor, that
the minimal polynomial of the second sequence σ1σ4σ8σ10 contains the irreducible
polynomial g2 = f1 ∨ f4 ∨ f8 ∨ f10 as a factor, etc. An important implication of
Lemma 6 and Lemma 7 is that each of the irreducible polynomials gj, 1 ≤ j ≤ 7,
divides the minimal polynomial of one and only one of the 124 sequences in (16).
Since the irreducible polynomials g1, . . . , g7 are distinct (they have pairwise different
degrees), we conclude that the polynomial

h =
7

∏

j=1

gj

is a divisor of the minimal polynomial of ζ. This, of course, implies that ord(h) ≤
ord(mζ). Since g1, . . . , g7 are pairwise relatively prime polynomials,

ord(h) = lcm(ord(g1), . . . , ord(g7)) (17)
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according to Lemma 8.
Apply Lemma 9 to the polynomial g1 = f0 ∨ f5 ∨ f8 ∨ f10 to obtain

ord(g1) = ord(f0) ord(f5) ord(f8) ord(f10) = (221 − 1)(226 − 1)(229 − 1)(231 − 1).

Similarly, we get

ord(g2) = ord(f1) ord(f4) ord(f8) ord(f10) = (222 − 1)(225 − 1)(229 − 1)(231 − 1),

ord(g3) = ord(f2) ord(f3) ord(f4) ord(f8) = (223 − 1)(224 − 1)(225 − 1)(229 − 1),

ord(g4) = ord(f2) ord(f4) ord(f7) ord(f8) = (223 − 1)(225 − 1)(228 − 1)(229 − 1),

ord(g5) = ord(f2) ord(f4) ord(f11) ord(f12)= (223 − 1)(225 − 1)(232 − 1)(233 − 1),

ord(g6) = ord(f2) ord(f8) ord(f9) ord(f10) = (223 − 1)(229 − 1)(230 − 1)(231 − 1),

ord(g7) = ord(f5) ord(f6) ord(f8) ord(f10) = (226 − 1)(227 − 1)(229 − 1)(231 − 1).

Substituting the right-hand sides into formula 17, we obtain

ord(h) = lcm(221 − 1, 222 − 1, . . . , 233 − 1). (18)

Since ord(h) ≤ ord(mζ), ord(mζ) = per(ζ), and the right-hand side of (18) is an
upper bound for per(ζ), we conclude that

per(ζ) = lcm(221 − 1, 222 − 1, . . . , 233 − 1).

The assertion concerning the least period of the keystream of ACHTERBAHN-80
is proved in the same way.

4.3 Robustness of keystream

The keystream generator of ACHTERBAHN is a specific realization of what we
shall call a primitive FSR combination generator. The concept generalizes the well
known and widely studied LFSR-based combination generator in which the out-
put sequences of several linear feedback shift registers with primitive characteristic
polynomials are combined by a suitable combining function.

A primitive FSR combination generator consists of a Boolean combining func-
tion F : F

n
2 → F2 and n primitive binary FSR’s A1, . . . , An. We shall use the

notation KSG(F ; A1, . . . , An). For each possible initialization of the shift registers
A1, . . . , An with nonzero initial states the produced binary periodic sequence ζ is
called a keystream of KSG(F ; A1, . . . , An). Two different keystreams may be trans-
lation distinct, or they may be shifted versions of each other.4

The combining function F of a FSR combination generator KSG(F ; A1, . . . , An)
should not depend on any of its variables linearly. For if it does, say, if F has the
form

F (x1, . . . , xn) = x1 + G(x2, . . . , xn),

4If the lengths of the primitive FSR’s A1, . . . , An are pairwise relatively prime, then all
keystreams of KSG(F ; A1, . . . , An) are shifted versions of one sequence.
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then we can do the following. Let σj be a nonzero output sequence of the FSR Aj,
1 ≤ j ≤ n. Let p1 = per(σ1) be the least period of σ1. Consider the keystream ζ.

ζ = F (σ1, . . . , σn) = σ1 + G(σ2, . . . , σn).

The linear operator g(T ) = T p1 − I annihilates σ1. Applying g(T ) to the left-hand
side and right-hand side of the above equation we get

g(T )ζ = g(T )G(σ2, . . . , σn).

The sequence η = g(T )ζ depends only on the n − 1 shift registers A2, . . . , An.
In order to prevent this undesirable phenomenon it is, however, not sufficient to

demand that F does not depend linearly on any of its variables as can be seen by
the following example. Let F have algebraic degree ≥ 3 and be of the form

F (x1, . . . , xn) = x1x2 + x2x3 + G(x4, . . . , xn).

Let pj = per(σj) for j = 1, 2, 3, let a = lcm(p1, p2), and let b = lcm(p2, p3). Then a
is a period of σ1σ2 and b is a period of σ2σ3. The binary polynomial

g(x) = (xa − 1)(xb − 1) = xa+b + xb + xa + 1

is a characteristic polynomial of σ1σ2 + σ2σ3. Therefore, if we apply the linear
operator g(T ) to both sides of

ζ = σ1σ2 + σ2σ3 + G(σ4, . . . , σn),

we obtain the sequence

η = g(T )ζ = g(T )G(σ4, . . . , σn).

The information inherent in the first three shift registers A1, A2, A3 (the initial states
of the shift registers and the form of the feedback functions) is no longer present
in the “manipulated” keystream g(T )ζ. This observation leads us to the following
design rule.

Rule 1: If the combining function F (x1, . . . , xn) has algebraic degree d and is given
by its algebraic normal form, then each variable xj, 1 ≤ j ≤ n, should appear in at
least one monomial of degree d.5

While this rule excludes the existence of sparse polynomials g of relatively low
degree that have the above demonstrated undesirable effect on the keystream, the
rule is not strong enough to imply the nonexistence of polynomials up to a certain
degree which have that undesirable effect on the keystream. We need a stronger
rule.

Rule 2: For each variable xj, 1 ≤ j ≤ n, there should be a monomial of degree d
in the algebraic normal form of F containing xj such that the lengths of the FSR’s
that are assigned to the variables of the monomial are pairwise relatively prime.

5The Boolean combining function R of ACHTERBAHN-1 violated this rule. It contained four
of its eight variables linearly.
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Definition 3. A keystream ζ of KSG(F ; A1, . . . , An) is called r-robust, or is said
to have degree of robustness r, if for all binary polynomials g with deg(g) ≤ r, the
sequence g(T )ζ depends on all n shift registers A1, . . . , An. The sequence g(T )ζ is
called independent of a particular shift register Aj, j ∈ {1, . . . , n}, if there exists a
polynomial h ∈ F2[x] such that g(T )ζ = h(T )ζ ′, where ζ ′ is a keystream of some
“smaller” keystream generator KSG(F ′; Ai1 , . . . , Aik) with a combining function F ′ :
F

k
2 → F2 of algebraic degree not greater than the algebraic degree of F , and where

{Ai1 , . . . , Aik} is a subset of {A1, . . . , An} not containing Aj. The sequence g(T )ζ is
said to depend on the FSR Aj if it is not independent of Aj.

Theorem 3. All keystreams produced by the keystream generator of ACHTER-
BAHN-80 and ACHTERBAHN-128 have degree of robustness ≥ 295.

In preparation for the proof of the theorem we introduce and discuss the concept
of the dominator of a periodic sequence.

Definition 4. Let σ be a binary periodic sequence with minimal polynomial mσ ∈
F2[x]. The dominator of σ, denoted by dom(σ), is the product of all irreducible
binary polynomials of maximum degree appearing in the canonical factorization of
mσ over F2. The dominator of a primitive binary FSR is the dominator of any
nonzero output sequence of the shift register.

We wish to derive a lower bound for the degree of the dominator of each NLFSR
A0, A1, . . . , A12 deployed in the keystream generator of ACHTERBAHN-128/80. To
this end we need the next lemma.

Lemma 10. The product I(q, n; x) of all monic irreducible polynomials in Fq[x] of
degree n is given by

I(q, n; x) =
∏

d|n

(

xqn/d

− x
)µ(d)

,

where the product is extended over all positive divisors d of n, and µ denotes the
Moebius function.

Proof. This is Theorem 3.29 in the finite field text book [21] of Lidl and Niederreiter.

Let σj be any nonzero output sequence of the FSR Aj, 0 ≤ j ≤ 12. From
Section 3.4 we know that L(σ0) = 221 − 5, L(σ1) = 222 − 4, L(σ2) = 223 − 2,
L(σ3) = 224 − 2. It follows that for j = 0, 1, 2, 3, the minimal polynomial of σj

contains all irreducible binary polynomials of degree Nj. Thus, we have

dom(σj) = I(2, Nj; x) =
∏

d|Nj

(

x2Nj/d

− x
)µ(d)

for j = 0, 1, 2, 3,

and therefore,

deg(dom(σj)) =
∑

d|Nj

µ(d)2Nj/d for j = 0, 1, 2, 3.

See Table 6 for the numerical values.
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j deg(dom(σj)) deg(dom(σj))/L(σj)

0 2 097 018 99.99%

1 4 192 254 99.95%

2 8 388 606 100%

3 16 772 880 99.97%

Table 6: Degrees of dominators of the first four FSR’s

For the shift registers Aj, 4 ≤ j ≤ 12, we do not know the exact value of
Lj = L(σj), but we know that Lj ≥ 224.8. Recall that the minimal polynomial mj

of σj has the form

mj =

dj
∏

i=1

f
(j)
i

with distinct irreducible polynomials f
(j)
i ∈ F2[x] whose degrees divide Nj and

are greater than 1. Assume that the polynomials are numbered in a way that
in f

(j)
1 , f

(j)
2 , . . . , f

(j)
dj

the polynomials of degree Nj come first. Write mj = gjhj with

gj = dom(σj). That is,

gj =

cj
∏

i=1

f
(j)
i and hj =

dj
∏

i=cj+1

f
(j)
i ,

where deg(f
(j)
i ) = Nj for 1 ≤ i ≤ cj, and deg(f

(j)
i ) < Nj for cj + 1 ≤ i ≤ dj. Then

the polynomial
∏

d|Nj

1<d<Nj

I(2, d; x)

is a multiple of hj. It follows that

deg(hj) ≤
∑∗

d|Nj

deg(I(2, d; x)) =
∑∗

d|Nj

∑

e|d

µ(e)2d/e,

where the asterix indicates that the corresponding sum is extended over all divisors
d of Nj with 1 < d < Nj. Finally, we obtain

deg(dom(σj)) = deg(mj) − deg(hj) ≥ L(σj) −
∑∗

d|Nj

∑

e|d

µ(e)2d/e > 224.79. (19)

The algebraic normal form of the combining function F of ACHTERBAHN-
128 contains 124 monomials. Therefore, any keystream of KSG(F ; A0, . . . , A12) is
the sum of 124 different periodic sequences (compare equation (16)). Among these
sequences the following eleven sequences are of particular interest.

σ0σ5σ8σ10, σ1σ4σ8σ10, σ2σ3σ4σ8, σ2σ4σ7σ8,

σ2σ4σ7σ12, σ2σ4σ8σ10, σ2σ4σ8σ11, σ2σ4σ10σ12,

σ2σ4σ11σ12, σ2σ8σ9σ10, σ5σ6σ8σ10.

(20)
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Each sequence is the product of four shift register sequences and the lengths of the
corresponding FSR’s are pairwise relatively prime. Consider, e.g., the first sequence
σ0σ5σ8σ10. The corresponding shift register lengths are N0 = 21, N5 = 26, N8 = 29,
N10 = 31.

Let for each j = 0, 1, . . . , 12, the canonical factorization of the dominator of σj

be given by

dom(σj) =

cj
∏

i=1

f
(j)
i .

An application of Lemma 7 and Lemma 3 shows that the dominator of the sequence
σ0σ5σ8σ10 is given by

w1 = dom(σ0σ5σ8σ10) =

c0
∏

i0=1

c5
∏

i5=1

c8
∏

i8=1

c10
∏

i10=1

(

f
(0)
i0

∨ f
(5)
i5

∨ f
(8)
i8

∨ f
(10)
i10

)

.

Selmer’s Lemma 3 implies that the c0c5c8c10 distinct irreducible factors of w1 all
have degree N0N5N8N10 = 490854. A variation of the proof of Corollary 1 shows
that

deg(w1) = deg(dom(σ0)) deg(dom(σ5)) deg(dom(σ8)) deg(dom(σ10)).

Using deg(dom(σ0)) = 2097018 (compare Table 6), and deg(dom(σj)) > 224.79 for
4 ≤ j ≤ 12 (see inequality (19)), we conclude that

deg(w1) > 295.36.

Since all irreducible factors of w1 have degree 490854, and—according to Lemma 6
and Lemma 7—σ0σ5σ8σ10 is the only sequence among the sequences in (16) whose
minimal polynomial has an irreducible factor of degree 490854, it follows that the
dominator w1 divides the minimal polynomial of the keystream ζ.

What we have just shown for w1 can be proved in the same way for the dominators
w2, . . . , w11 of the remaining ten sequences in (20). We collect the results in Table 7.

Proof of Therorem 3. Let ζ be a keystream of KSG(F ; A0, . . . , A12), the keystream
generator of ACHTERBAHN-128. Assume to the contrary that ζ has degree of
robustness < 295. Then there exists a binary polynomial g with deg(g) < 295 such
that the sequence η = g(T )ζ is independent of at least one shift register Aj ∈
{A0, . . . , A12}. That means, that there is a polynomial h ∈ F2[x] and a keystream
generator KSG(F ′; Ai1 , . . . , Aik) producing a keystream ζ ′ such that g(T )ζ = h(T )ζ ′,
where F ′ has algebraic degree ≤ 4 and {Ai1 , . . . , Aik} is a proper subset of {A0, . . . ,
A12} which does not contain Aj. Select a product sequence from (20) which contains
σj as a factor. Spot the dominator of the chosen product sequence in Table 7. For
convenience of argumentation assume that j = 0. Then we have to consider the
dominator w1 = dom(σ0σ5σ8σ10).

The dominator w1 is the product of distinct binary irreducible polynomials of de-
gree 490854. Set η = g(T )ζ and η′ = h(T )ζ ′. We examine the minimal polynomials
of η and η′. By Proposition 5A we have

mη =
mζ

gcd(mζ , g)
.
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Dominator
wk

Degree of irreducible
factors of wk

Lower bound for
deg(wk)

w1 = dom(σ0σ5σ8σ10) 490 854 295.36

w2 = dom(σ1σ4σ8σ10) 494 450 296.36

w3 = dom(σ2σ3σ4σ8) 400 200 296.57

w4 = dom(σ2σ4σ7σ8) 466 900 297.37

w5 = dom(σ2σ4σ7σ12) 531 300 297.37

w6 = dom(σ2σ4σ8σ10) 516 925 297.37

w7 = dom(σ2σ4σ8σ11) 533 600 297.37

w8 = dom(σ2σ4σ10σ12) 588 225 297.37

w9 = dom(σ2σ4σ11σ12) 607 200 297.37

w10 = dom(σ2σ8σ9σ10) 620 310 297.37

w11 = dom(σ5σ6σ8σ10) 631 098 299.16

Table 7: Properties of the dominator of the product sequences

Since w1 divides mζ , deg(w1) > 295.36, and deg(g) < 295, we conclude that
gcd(mη, w1) > 1. It follows that the minimal polynomial mη contains an irreducible
factor of degree 490854. By Proposition 5A,

mη′ =
mζ′

gcd(mζ′, h)
.

In particular, mη′ divides mζ′ . It follows from Lemma 6, and from Lemma 7 and
Lemma 3, that the minimal polynomial of ζ ′ does not contain any irreducible factors
of degree 490854. Thus, the polynomials mη and mη′ are different. This, of course,
implies that the sequences η and η′ are different and we arrive at the contradiction
g(T )ζ 6= g(T )ζ ′. This completes the proof of the assertion concerning the keystream
of ACHTERBAHN-128. The proof for ACHTERBAHN-80 uses exactly the same
arguments.

Remark. The dominators w1, . . . , w11 of the eleven sequences in (20) are pairwise
relatively prime divisors of the minimal polynomial of the keystream ζ. Therefore,
the product w = w1 · · ·w11 divides mζ , and deg(w) is a lower bound for the linear
complexity of the keystream ζ of ACHTERBAHN-128. Thus, the sum of the entries
in the last column of Table 7 yields the (slightly improved) lower bound

L(ζ) ≥ 2100.92.

Regarding ACHTERBAHN-80 we must take into account that only the polynomi-
als w2, w3, w4, w6, w7, w10, and w11 are divisors of the minimal polynomial of the
keystream ζ. We obtain the lower bound

L(ζ) ≥ 2100.46.
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5 Analysis

5.1 Algebraic attacks

If we relate the bits of the initial state of the keystream generator of ACHTER-
BAHN-128 to the bits of the produced keystream, we obtain a system of multivariate
polynomial equations in 351 unknowns of algebraic degree 114. In fact, the lengths of
the thirteen shift registers in the keystream generator run through the integer values
between 21 and 33, so that the size of the internal state is 13(21+33)/2 = 351 bits,
which explains the number of unknowns. To explain the asserted value for the degree
of the algebraic equations we first consider a single primitive binary FSR of length
N .

Let the initial state of the shift register be given by (s0, s1, . . . , sN−1). If the shift
register is linear, then each output bit sn, n ≥ 0, of the shift register is the sum of
a certain number of initial state bits taken from the set {s0, s1, . . . , sN−1}.

6 If the
shift register is nonlinear then the output bit sn, n ≥ 0, is the sum of monomials
taken from the set

{s0, s1, . . . , sN−1, s0s1, s0s2, . . . , sN−2sN−1, . . . , s1s2 · · · sN−1},

where, for most shift registers, each monomial of the set will occur in the represen-
tation of some sn. The set has cardinality 2N − 2 and contains all monomials that
can be formed out of the initial state bits s0, s1, . . . , sN−1 except the two monomials
1 and s0s1 · · · sN−1. The monomial 1 does not occur because the feedback function
A(x0, . . . , xN−1) of the NLFSR has the property A(0, . . . , 0) = 0. The monomial
s0s1 · · · sN−1 of degree N does not occur because the feedback function A is bal-
anced. The fact that all the other 2N −2 monomials will occur in the representation
of some sn is not guaranteed for every nonlinear binary FSR. But it is a typical
property that most NLFSR’s have.

Consider the 4-stage primitive LFSR given by L(x0, x1, x2, x3) = x0 +x1. Let the
initial state of the shift register be (a, b, c, d). The output bits of the shift register
appearing in the first period are

a, b, c, d, a + b, b + c, c + d, a + b + d, a + c, b + d, a + b + c, b + c + d,

a + b + c + d, a + c + d, a + d.

Now consider the 4-stage primitive NLFSR given by A(x0, x1, x2, x3) = x0 + x1 +
x2 +x1x3. With the same initial state the output bits of the shift register appearing
in the first period are

a, b, c, d, a + b + c + bd, b + d + ac + bc + bcd, a + b + acd, b + c + abd + bcd,

c + d + cd + abc + acd + bcd, a + b + c + d + ad + bd + abd + acd,

a + b + c + d + ab + ac + abc + abd + bcd, a + d + bc + cd + abc + acd,

a + c + ad + bd + abd, c + d + ab + ac + bd + abc, a + b + d + ac.

6If f ∈ F2[x] is the characteristic polynomial of the linear feedback shift register and
xn ≡ aN−1x

N−1 + · · · + a1x + a0 mod f(x), then sn = aN−1sN−1 + · · · + a1s1 + a0s0.
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We call the sequence of the first 2N − 1 output bits of a binary N -stage primitive
feedback shift register, where each output bit is expressed as a multivariate polyno-
mial in the initial state bits, the monomial spectrum of the shift register.7 Figure 6
displays the monomial spectra of the two primitive feedback shift registers under
discussion graphically.
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Figure 6: Comparison between primitive LFSR and primitive NLFSR

The following property of the monomial spectra of the shift registers A0, A1, . . . , A12

deployed in the keystream generator of ACHTERBAHN-128/80 has been investi-
gated via computer calculations.

Fact 5. For 2Nj ≤ k ≤ 2Nj − Nj, the kth entry in the monomial spectrum of Aj

contains close to 2Nj−1 different monomials and has in general degree Nj − 1.

So much about a single primitive nonlinear feedback shift register. We have now
to explore the effect of the Boolean combining function F . The algebraic normal
form of F contains 48 monomials of degree 4, among them the monomial x5x6x11x12

(compare Section 3.2). Let σj, 0 ≤ j ≤ 12, denote the nonzero output sequence of
the shift register Aj corresponding to the given respective initial state. The sequence
σ5σ6σ11σ12 is one component of the keystream ζ, which is the sum of 124 periodic
sequences (see (16)). If we want to express the terms of the sequence σ5σ6σ11σ12

in terms of the initial state bits of the shift registers A5, A6, A11, and A12, then,
by Fact 5, this will lead to a system of multivariate polynomial equations in which
most equations have degree

(N5 − 1) + (N6 − 1) + (N11 − 1) + (N12 − 1) = 25 + 26 + 31 + 32 = 114.

7More precisely, let A be primitive binary FSR of length N . For each n ≥ 0, the shift register
A induces a Boolean function fn : F

N
2 → F2, which maps the initial state (s0, s1, . . . , sN−1) of

the shift register A to the bit sn of the corresponding output sequence (sn)∞n=0
. The monomial

spectrum of A is defined to be the sequence (f0, f1, . . . , fp−1), where each Boolean function fn =
fn(s0, s1, . . . , sN−1), 0 ≤ n ≤ p − 1, is represented by its algebraic normal form and where p =
2N − 1.
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Since we need 2Nj − 2 different monomials, formed by the Nj initial state bits of the
shift register Aj, in order to express the bits of the sequence σj by the bits of the
initial state of Aj, it follows that we need

(2N5 − 2)(2N6 − 2)(2N11 − 2)(2N12 − 2) ≈ 2118

different monomials in order to express the bits of the sequence σ5σ6σ11σ12 by the
initial state bits of the four shift registers A5, A6, A11, and A12. Taking into account
the effect of the other 123 monomial terms in the algebraic normal form of F , we
conclude that we need more than 2120 different monomials, formed by the 351 initial
state bits of the keystream generator, in order to express the keystream bits by
the initial state bits. The estimate, however, relies on the fact that the combining
function F has (maximum) algebraic immunity 4. If this was not the case, then
there would exist a polynomial E in R = F2[x0, . . . , x12]/(x2

0 − x0, . . . , x
2
12 − x12)

such that E ∗ F = 0 or E ∗ F is a nonzero polynomial in R of degree < 4. This
could be exploited in the way described in [5] to reduce the complexity of the attack
significantly.

The above system of algebraic equations can be solved by linearization: Each
monomial is replaced by a new independent variable. This turns the system of
algebraic equations of degree 114 in 351 unknowns into a system of linear equations
in more than 2120 unknowns. To set up the system of linear equations one needs
at least 2120 keystream bits. Since we restricted the frame length to 264 (this is
necessary to counter correlation attacks), the task to set up and solve the system of
equations is impossible.

Let us assume that the attacker is given more than 2120 keystream bits so that
he can set up the system of linear equations. The complexity for solving the system
of equations is O((2120)ω) = O(2285), where ω ≈ 2.38 is the exponent of fast matrix
multiplication.

If we apply the above arguments to ACHTERBAHN-80, we find that the system
of algebraic equations relating the keystream bits to the initial state bits has degree
110 and contains 297 unknowns. The corresponding system of linear equations has
more than 2116 unknowns and can be solved in time O(2276).

We collect the results in the following Fact.

Fact 6.The time complexity for computing the initial state bits of the keystream gen-
erator from a sufficient number of keystream bits is O(2285) for ACHTERBAHN-
128, and O(2276) for ACHTERBAHN-80. More than 2120 or 2116, respectively,
keystream bits are required to perform the task.

At the beginning of this section we compared the monomial spectra of two prim-
itive FSR’s, one being linear the other one nonlinear. It is interesting to compare
the monomial spectra of two nonlinear feedback shift registers, one being primitive
the other one nonprimitive. Consider the 4-stage nonlinear and nonprimitive FSR
defined by B(x0, x1, x2, x3) = x0 + x1 + x3 + x2x3. The shift register has four differ-
ent cycles: (0), (01), (001), (0001101111). Thus the shift register can produce four
translation distinct sequences of respective least periods 1, 2, 3, and 10. It follows
that lcm(1, 2, 3, 10) = 30 is the least common period for all output sequences of the
shift register. We call the least common multiple of the least periods of all possible
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output sequences of an arbitrary FSR the period of the shift register. (In the case
that the shift register is primitive the definition is compatible with Definition 2.)
Thus, shift register B has period p = 30. The definition of the monomial spectrum
of a primitive FSR given above can now be extended to an arbitrary binary FSR:
The monomial spectrum of a binary FSR of period p is the sequence of the first p
output bits of the shift register expressed in terms of the initial state bits.

The monomial spectrum of shift register B is displayed in Figure 7. If we compare
the monomial spectrum of the nonprimitive shift register B with the monomial
spectrum of the primitive shift register A in Figure 6, we observe that the simple
cycle structure of A implies a more compact monomial spectrum. If we linearize
the system of algebraic equations obtained by relating the output bits in the first
period of the shift register with the initial state bits of the shift register, then A
gives rise to a slightly overdefined system of linear equations (15 equations in 14
unknowns), whereas B gives rise to a strongly overdefined system of linear equations
(30 equations in 14 unknowns).
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Figure 7: Monomial spectrum of a non-primitive NLFSR
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5.2 Correlation attacks

We first consider the classical correlation attack of Siegenthaler [32]. The Boolean
combining function G of ACHTERBAHN-80 is correlation immune of order 6. In
order to mount a correlation attack of the type described in [32], the attacker must
consider at least seven shift registers simultaneously. The sum of the lengths of
the shortest seven FSR’s of the keystream generator of ACHTERBAHN-80 is 175.
Therefore, the complexity of Siegenthaler’s correlation attack against ACHTER-
BAHN-80 is at least O(2175). The Boolean combining function F of ACHTER-
BAHN-128 has order of resiliency 8. It follows that the complexity of Siegenthaler’s
attack is greater than O(2225).

A divide an conquer attack against Achterbahn-1 has been described in [18], [19].
The idea of the attack is to set some variables of the combining function to 0 or 1
and use the obtained subfunction in the attack. The attack will be successful under
the following two conditions: (i) The sum of the lengths of the shift registers which
correspond to the variables that are set to constant values must be less than the key
length of the cipher. (ii) The obtained subfunction should be affine or quadratic and
the number of monomials in the algebraic normal form of the subfunction should
not be greater than the base-2 logarithm of the largest shift register length. If the
conditions are not fulfilled the attack will not work or have a higher complexity
than exhaustive key search. ACHTERBAHN-80 and ACHTERBAHN-128 are not
threatened by this divide and conquer attack. One simply cannot derive subfunctions
from the combining functions G and F of ACHTERBAHN-80 and ACHTERBAHN-
128, respectively, that are suitable for the attack.

A time-memory trade-off attack was mounted against a modified version of
Achterbahn-1 exploiting the fact that the combining function contained four of its
eight variables linearly [19]. ACHTERBAHN-80 and ACHTERBAHN-128 are im-
mune against this attack since their respective combining functions depend nonlin-
early on all of its variables. (Compare the discussion in Section 4.3.)

A guess and determine attack

The attack was described in [19]. We explain the attack for the Boolean com-
bining function of Achterbahn-1 which was given by

R(x1, . . . , x8) = x1 + x2 + x3 + x4 + x5x7 + x6x7 + x6x8

+ x5x6x7 + x6x7x8.

The function R agrees with the linear function

L(x1, . . . , x8) = x1 + x2 + x3 + x4 + x6

with probability p = 3/4. That is, we have R(x) = L(x) for 192 vectors x ∈ F
8
2.

Consider the keystream ζ = R(σ1, . . . , σ8). The sequences σ1, . . . , σ8 are the
output sequences of the eight driving feedback shift registers. Each sequence σj,
1 ≤ j ≤ 8, is uniquely determined by its initial state vector. The attacker aims
to determine the initial state vector of a sequence σj.

8 Since R(x) = L(x) with

8In the case of Achterbahn-1 the knowledge of the initial state of one shift register was sufficient
to recover the secret key. For ACHTERBAHN-128/80 it is not possible to recover the secret key
from the known initial state of one shift register.
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probability 3/4, it follows that the nth term, n ≥ 0, of the sequence ζ agrees with
the nth term of the sequence σ1 + σ2 + σ3 +σ4 + σ6 with probability p = 3/4. Write
p = 1

2
(1 + ε) = 1

2
(1 + 1

2
), so that ε is the correlation coefficient of R and L.

We use the notation

ζ
ε=1/2
≈ σ1 + σ2 + σ3 + σ4 + σ6 (21)

to express the fact that the terms of the two sequences agree with probability p =
1
2
(1 + ε), where ε = 1/2.

Approximation (21) is equivalent to

ζ + σ1

ε=1/2
≈ σ2 + σ3 + σ4 + σ6. (22)

Let pj denote the least period of σj. Then the polynomial

g(x) = (xp2 − 1)(xp3 − 1)(xp4 − 1)(xp6 − 1)

is a characteristic polynomial of σ2 + σ3 + σ4 + σ6. Apply the linear operator g(T )
to both sides of (22). The right-hand side vanishes and we obtain

g(T )[ζ + σ1]
ε′=ε16

≈ 0, (23)

where 0 denotes the zero sequence. The polynomial g has 24 = 16 terms, so that the
application of g(T ) to a sequence % means that we add together termwise 16 shifted
versions of the sequence %. It is assumed— in analogy to the piling-up lemma—that
if the original sequence is biased with ε, the new sequence g(T )% will be biased with
ε′ = ε16. (Simulation results suggest that this is a reasonable assumption despite
the fact that the requirements for an application of the piling-up lemma are not
fulfilled.) The idea of the attack is to guess the sequence σ1. The corresponding
shift register has length N1 = 22, so that there are 222 possible initial states. Because
of Step 5 of the key-loading algorithm only 221 initial states are possible candidates.

For each possible sequence σ1 one analyzes the sequence

g(T )[ζ + σ1] = g(T )ζ + g(T )σ1. (24)

For the correct value of σ1, the sequence will be biased with ε′ = 2−16. For a wrongly
guessed σ1 the sequence in (24) should be unbiased. The authors of [19] assumed
that by investigating (1/ε′)2 = 232 terms of the sequence in (24), the correct initial
state vector of the sequence can be identified. This is not true. The required number
of sequence bits has to be larger—by about the factor of 16— in order to identify
the correct sequence σ1 with high probability. Thus one has to compute at least
24(ε′)−2 = 236 bits of the sequence in (24). The complexity of this step is O(236).
For each of the 221 candidate sequences σ1, the sequence in (24) must be computed
and analyzed. Thus the complexity of the attack is of the order 221 · 236 = 257.

Let us consider the effect of the guess and determine attack against ACHTER-
BAHN-80. The best linear approximation of the combining function G of ACHTER-
BAHN-80 is given by

L(x1, . . . , x11) = x1 + x3 + x4 + x5 + x6 + x7 + x10.
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The correlation coefficient of L and G is ε = −1/8. Thus, for the keystream ζ =
G(σ1, . . . , σ11), we have

ζ
ε=−1/8
≈ σ1 + σ3 + σ4 + σ5 + σ6 + σ7 + σ10. (25)

The best approach for the attack is to guess the three sequences σ1, σ3, and σ4.
There are 268 possibilities. Write (25) in the equivalent form

ζ + σ1 + σ3 + σ4

ε=−1/8
≈ σ5 + σ6 + σ7 + σ10,

and apply the linear operator g(T ) with

g(x) = (xp5 − 1)(xp6 − 1)(xp7 − 1)(xp10 − 1)

to both sides. Then for the correct guess (σ1, σ3, σ4), the sequence

g(T )[ζ + σ1 + σ3 + σ4] = g(T )ζ + g(T )σ1 + g(T )σ3 + g(T )σ4

will be biased with ε′ = ε24
= 2−48. We need to process 2100 terms of the sequence.

The overall complexity of the attack is O(2168).

The guess and determine attack is more threatening in conjunction with quadratic
approximations. Consider the Boolean function

Q1(x1, . . . , x11) = x1 + x2 + x3 + x4x7 + x9x10. (26)

We have Q1(x) = G(x) for 1056 vectors x ∈ F
11
2 . In other words, the functions Q1

and G agree with probability p = 1
2
(1 + 1

32
). We have

ζ + σ1 + σ2 + σ3
ε=2−5

≈ σ4σ7 + σ9σ10. (27)

Let r1 = per(σ4σ7) = (225 − 1)(228 − 1) and r2 = per(σ9σ10) = (230 − 1)(231 − 1).
Compute

g(x) = (xr1 − 1)(xr2 − 1), (28)

and apply g(T ) to both sides of (27) to obtain

g(T )[ζ + σ1 + σ2 + σ3]
ε=2−20

≈ 0.

We guess the sequences σ1, σ2, and σ3 (266 possibilities). We have to compute and
to analyze 24(220)2 = 244 terms of the sequence, so that the overall complexity of
the attack is O(2110).

For ACHTERBAHN-128 the most favorable approximation for the attack is
given by the Boolean function

Q2(x0, x1, . . . , x12) = x0 + x1 + x2 + x3 + x4 + x7x10 + x8x9. (29)

The function Q2 is correlated to the combining function F with ε = 1/32. The
best strategy would be to guess the five sequences σ0, σ1, σ2, σ3, and σ4. The time
complexity of the attack in this case is O(2154).
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For ACHTERBAHN-80 cubic approximations are not relevant, since the least
period of the product of any three sequences σj, 1 ≤ j ≤ 11, is greater than 264, the
frame length. For ACHTERBAHN-128, however, there are four possibilities that
the product of three sequences σj, 0 ≤ j ≤ 12, has least period < 264. These are
the sequences

σ0σ1σ3, σ0σ1σ7, σ0σ1σ12, σ1σ3σ12

whose least periods are slightly greater than 262.60, 262.42, 262.19, and 263.60, respec-
tively. Therefore, in the case of ACHTERBAHN-128 we also have to consider cubic
approximations. Only cubic approximations that contain any of the monomials
x0x1x3, x0x1x7, x0x1x12, x1x3x12 are of interest. Cubic Boolean functions that are
uncorrelated to F , or that contain other monomials of degree 3 are irrelevant. All
cubic approximations that are relevant have correlation coefficients ε ≤ 2−6 with F .
One such cubic approximation is given by

C(x0, x1, . . . , x12) = x4 + x5 + x6 + x7 + x8x10 + x0x1x3.

Here we have ε = 2−6. The best strategy is to guess the first four sequences. The
time complexity of the attack is O(2154).

Another guess and determine attack

This is a refinement of the above discussed guess and determine attack. The
attack appeared in [15]. In the article [15], a stream cipher concept is investigated
that has been announced in [11] but never got fully specified. The claim made by
the authors of [15] that they can determine the initial state of the shortest FSR of
that unspecified cipher from 259.02 keystream bits is wrong. One needs more than
263 keystream bits (the declared frame length for the announced cipher was 263).
We shall discuss the issue in more detail in a separate paper.

Reconsider the quadratic approximation Q1 for the combining function G in (26).
Let g(x) = (xr1 − 1)(xr2 − 1) be the polynomial in (28). We have

ζ
ε=2−5

≈ σ1 + σ2 + σ3 + σ4σ7 + σ9σ10.

Applying g(T ) to both sides gives

g(T )ζ
ε=2−20

≈ g(T )σ1 + g(T )σ2 + g(T )σ3. (30)

For r ≥ 1, the decimation operator Dr is a linear operator on F
∞
2 defined by Drσ =

(snr)
∞
n=0 for all σ = (sn)∞n=0 in F

∞
2 . Let p1 be the least period of σ1. Consider the

decimation operator Dp1. For ease of notation set Dp1 = D, and apply D to both
sides of (30). This yields

Dg(T )ζ
ε=2−20

≈ Dg(T )σ1 + Dg(T )σ2 + Dg(T )σ3. (31)

We have
g(T )σ1 = T r1+r2σ1 + T r1σ1 + T r2σ1 + σ1.

Since p1 = per(σ1), the sequence Dσ1 is constant. It follows that the sequence
Dg(T )σ1 is constant. Hence (31) is equivalent to

Dg(T )[ζ + σ2 + σ3]
ε=2−20

≈ constant sequence.
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The strategy is again to guess the sequences σ2 and σ3. There are 245 possibilities
for (σ2, σ3). In order to determine the correct pair (σ2, σ3) one needs 244 terms of
the sequence Dg(T )ζ. That is, one needs p12

44 = (222 − 1)244 ≈ 266 terms of the
sequence g(T )ζ, and at least that many terms of the sequence ζ. Since the frame
length of ACHTERBAHN-80 is 264, the attack cannot be carried out. If the attacker
was given more than 266 keystream bits, the time complexity of the attack would be
O(289).

If we apply the decimation attack to the keystream of ACHTERBAHN-128 using
the quadratic approximation in (29), we find that the attack requires more than 265

keystream bits. If they were made available to the attacker, the complexity of the
attack would be O(2134).
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6 Implementation

6.1 Parallel implementations

Achterbahn is a hardware oriented stream cipher design. In a straightforward im-
plementation of the keystream generator one bit of keystream is produced per clock
cycle. The speed of keystream generation, and hence the encryption speed, can be
increased by a factor of 2, 4, or 8, respectively, by implementing the Boolean com-
bining function several times and by using parallel implementations of the driving
feedback shift registers. We shall speak of the 1-bit, 2-bit, 4-bit, and 8-bit imple-
mentation of the keystream generator, respectively, when one, two, four, or eight
keystream bits are produced per clock cycle.

In a traditional implementation of a feedback shift register the content of cell
Dk is shifted into cell Dk−1 and the content of one memory cell is emitted. In a
parallel implementation of the shift register, with degree of parallelization q ≥ 1,
the content of cell Dk is shifted into cell Dk−q and the contents of q memory cells
(e.g., the contents of D0, D1, . . . , Dq−1) are emitted at each clock pulse. The method
is best explained in an example: Consider the 9-stage nonlinear FSR defined by the
feedback function

A(x0, x1, . . . , x8) = x0 + x7 + x1x2.

Let D0 be the output cell of the shift register. Then the traditional implementation
of the shift register looks like this:
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A parallel implementation of the FSR with degree of parallelization q = 2 has
the following form:
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A 4-bit implementation of the shift register is given by:
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It is important to select shift registers for which the logical depth of the feedback
function is still relatively small in the intended parallel implementation. The shift
registers Aj, 0 ≤ j ≤ 12, specified in Section 3.4, were constructed in a way such
that all feedback functions have the same logical depth. The logical depth is three
for all shift registers in the 1-bit implementation, and grows to five in an 8-bit
implementation of the shift register. In each feedback function Aj(x0, x1, . . . , xNj−1),
the last seven variables do not occur in any monomial of degree ≥ 2. (Most of these
variables do not occur at all.) This is a measure to ensure that the logical depth
will still be small in all parallel implementations up to the parallelization degree 8.

The increased performance of the underlying feedback shift registers results in a
corresponding increase of speed of keystream generation provided that the Boolean
combining function is implemented q times, were q is the degree of parallelization
of the shift registers. If q = 8 is chosen, then the keystream generator produces
one byte of keystream per clock cycle. If ζ = (zn)∞n=0 is the keystream, then the
first emitted byte has the form (z0, z1, z2, z3, z4, z5, z6, z7), and the second byte is
(z8, z9, z10, z11, z12, z13, z14, z15), and so on. It is important to note that in any parallel
implementation of the keystream generator exactly the same keystream bits are
produced as in the 1-bit implementation. A parallel implemention of the keystream
does not only increase the encryption rate, it also cuts down resynchronization times.
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6.2 Throughput and design size

We implemented the keystream generator of ACHTERBAHN-128/80 and of ACH-
TERBAHN-80 using high-level hardware description language VHDL and a stan-
dard synthesis compiler. We used a low-Vt 1.5V standard cell library targeting 130
nm CMOS technology. For the synthesis, worst case conditions (125◦ C junction
temperature and 10% voltage drop) were assumed.9 We present the synthesis results
for two different implementations of the keystream generator of ACHTERBAHN-
128/80 and ACHTERBAHN-80.

The first implementation aims to minimize hardware costs and has slightly higher
resynchronization times. In this implementation all flip-flops of the keystream gen-
erator are without reset and scan functionality (see the discussion at the end of
Section 2.4). In this implementation the first Nj key bits are loaded into each shift
register bit by bit. We shall refer to this implementation of Achterbahn as the
implementation without SPA countermeasures.

In the second implementation each shift register Aj contains 16 scan flip-flops.
The first 16 key bits are loaded into each shift register Aj simultaneously within one
clock cycle. We shall refer to this second implementation of the keystream generator
as the implementation of Achterbahn with SPA countermeasures.

Table 8 contains the design sizes of the implementation of Achterbahn without
SPA countermeasures for degrees of parallelization 1, 2, 4, and 8. The design sizes
are given in NAND gate equivalents (GE). The Table contains also values for the
hardware efficiency for the various parallel implementations. The hardware efficiency
is defined as the number of keystream bits produced per clock cycle divided by
the design size in units of 1000 GE. Table 9 contains the synthesis results for the
implementation of Achterbahn with SPA countermeasures.

ACHTERBAHN-128/80 ACHTERBAHN-80

Design size
in GE

Hardware
efficiency

Design size
in GE

Hardware
efficiency

1-bit implementation 2538 0.39 2188 0.46

2-bit implementation 3058 0.65 2633 0.76

4-bit implementation 4082 0.98 3518 1.14

8-bit implementation 6183 1.29 5315 1.51

Table 8: Synthesis results for Achterbahn without SPA counter measures
.

The design sizes listed in the tables are valid for operating frequencies up to
400 MHz. For higher frequencies the design size is a function of the required
throughput. For instance, the 8-bit implementation of ACHTERBAHN-80 with-
out SPA countermeasures has design size 5447 GE at a throughput of 2 Gbit/s, and
a design size of 8651 GE at a throughput of 8 Gbit/s.

9Under typical conditions (25◦ C junction temperature at 1.5 V) for high operating frequencies
the obtained design sizes are about 10% smaller.
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ACHTERBAHN-128/80 ACHTERBAHN-80

Design size
in GE

Hardware
efficiency

Design size
in GE

Hardware
efficiency

1-bit implementation 2892 0.34 2476 0.40

2-bit implementation 3344 0.60 2872 0.70

4-bit implementation 4342 0.92 3714 1.08

8-bit implementation 6349 1.26 5446 1.47

Table 9: Synthesis results for Achterbahn with SPA counter measures

Figure 8 shows the design sizes for the various parallel implementations of ACHTER-
BAHN-128/80 without SPA counter measures in the throughput range from 1 Mbit/s
to 8 Gbit/s. Each plotted symbol corresponds to a synthesis result. The synthesis
results for the 1-bit implementation are indicated by circles. The synthesis results
for the 2-bit, 4-bit, and 8-bit implementation are indicated by diamonds, squares,
and triangles, respectively. Filled symbols correspond to synthesis results in which
the Boolean combining function has been pipelined.

0 2000 4000 6000 8000
Throughput [Mbit/s]

2000

4000

6000

8000

10000

D
es

ig
n 

si
ze

 [G
E

]

1-bit
1-bit pipelined
2-bit
2-bit pipelined
4-bit
4-bit pipelined
8-bit
8-bit pipelined

0 1000 2000
2000

2500

3000

3500

4000

Figure 8: Throughput versus design size for ACHTERBAHN-128/80 without SPA
countermeasures

Since the feedback shift registers Aj have by construction a small logical depth
(three in the 1-bit implementation, five in the 8-bit implementation), the critical
path of the design lies in the Boolean combining function which has logical depth
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nine. If the operating frequency is increased beyond a certain value, it makes sense to
pipeline the Boolean combining function. For the 1-bit implementation, pipelining
is appropriate if the required throughput becomes greater than 500 Mbit/s. It is
only necessary to insert one pipeline stage into the combining function which costs 7
flip-flops in the 1-bit implementation. In the 2-bit, 4-bit, and 8-bit implementation,
one needs 14, 28, and 56 flip-flops, respectively.

At a throughput of about 900 Mbit/s the design size of the pipelined 1-bit
implementation reaches the design size of the unpipelined 2-bit implementation. At
a throughput of approximately 2 Gbit/s the design size of the 2-bit implementation
reaches the design size of the 4-bit implementation. At about 4.2 Gbit/s the design
size of the 4-bit implementation reaches the design size of the 8-bit implementation.

Figure 9 gives the design size/throughput results for ACHTERBAHN-80 without
SPA countermeasures. The synthesis results for the implementations with SPA
counter measures can be found in Figure 10. The design size of ACHTERBAHN-
80 lies between the design size of the reduced version of Achterbahn-1 and the full
version of Achterbahn-1 (see [9, p. 28] ). The performance values at high frequencies
are slightly better for ACHTERBAHN-80 due to the more efficient FSR’s.10

0 2000 4000 6000 8000
Throughput [Mbit/s]

0

2000

4000

6000

8000

D
es

ig
n 

si
ze

 [G
E

]

1-bit
1-bit pipelined
2-bit
2-bit pipelined
4-bit
4-bit pipelined
8-bit
8-bit pipelined

0 1000 2000
2000

2500

3000

Figure 9: Throughput versus design size for ACHTERBAHN-80 without SPA coun-
termeasures

10Incorrect results regarding the efficiency of the parallel implementations of Achterbahn-1 have
been reported in [13].
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Figure 10: Throughput versus design size for ACHTERBAHN-128/80 (above) and
ACHTERBAHN-80 (below) with SPA countermeasures
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6.3 Resynchronization times

In many applications short resynchronization times are at least as important as high
encryption speed. By resynchronization time we mean the number of clock cycles
necessary to initialize the keystream generator with the secret key K and the public
initial value IV . The resynchronization time tresync.1 for ACHTERBAHN-128/80
with SPA countermeasures is given by the formula

tresync.1 = 1 +
k + l + 80

q
,

where k ∈ {40, 48, . . . , 120, 128} is the key length, l ∈ {0, 8, 16, . . . , 120, 128} is
the IV -length, and q ∈ {1, 2, 4, 8} denotes the degree of parallelization. Table 10
contains the resynchronization times for a subset of key and IV -lengths.

Key

size

IV -lengths IV -lengths

0 32 64 80 96 112 128 0 32 64 80 96 112 128

1-bit implementation 2-bit implementation

64 145 177 209 225 241 257 273 73 89 105 113 121 129 137

80 161 193 225 241 257 273 289 81 97 113 121 129 137 145

96 177 209 241 257 273 289 305 89 105 121 129 137 145 153

112 193 225 257 273 289 305 321 97 113 129 137 145 153 161

128 209 241 273 289 305 321 337 105 121 137 145 153 161 169

4-bit implementation 8-bit implementation

64 37 45 53 57 61 65 69 19 23 27 29 31 33 35

80 41 49 57 61 65 69 73 21 25 29 31 33 35 37

96 45 53 61 65 69 73 77 23 27 31 33 35 37 39

112 49 57 65 69 73 77 81 25 29 33 35 37 39 41

128 53 61 69 73 77 81 85 27 31 35 37 39 41 43

Table 10: Resynchronization times for Achterbahn-128/80

The resynchronization times tresync.2 for ACHTERBAHN-128/80 without SPA
counter measures are given by the formula

tresync.2 =
k + l + 96

q
,

where k, l, and q range over the same set of values as above.
By pure resynchronization times tresync.3 we mean the time necessary to load the

initial value only. The corresponding formula reads

tresync.3 = 1 +
l + 96

q
.
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Table 11 lists the pure resynchronization times for some IV -lengths. See Section 3.5
for more explanations.

IV -lengths

0 32 64 80 96 112 128

1-bit implementation 97 129 161 177 193 209 225

2-bit implementation 49 65 81 89 97 105 113

4-bit implementation 25 33 41 45 49 53 57

8-bit implementation 13 17 21 23 25 27 29

Table 11: Pure resynchronization times for Achterbahn-128/80
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7 Appendix A

In this appendix we collect some basic facts about the minimal polynomial of a
periodic sequence with elements in a finite field Fq. We shall refer to the results
of this section at various occasions during the discussions in the main part of this
report. In the main part of the report only sequences with elements in the binary
field F2 will occur but it takes no extra effort to present the results in this section
in the context of a general finite field Fq.

Let F
∞
q denote the Fq-vector space of all sequences σ = (sn)∞n=0 of elements sn

of Fq, where addition and scalar multiplication are performed termwise. A sequence
σ = (sn)∞n=0 in F

∞
q is called periodic if there is a positive integer p such that sn+p = sn

for all n ≥ 0. The smallest such p is called the least period of σ. We use the notation
per(σ) to designate the least period of the periodic sequence σ.

A useful linear operator on the vector space F
∞
q is the shift operator T defined

by Tσ = (sn+1)
∞
n=0 for all σ ∈ F

∞
q . Any polynomial g ∈ Fq[x] gives rise to a linear

operator g(T ) on F
∞
q . We say that a polynomial g ∈ Fq[x] annihilates a periodic

sequence σ ∈ F
∞
q if g(T )σ is the zero sequence 0.

Definition 5. Let σ be a periodic sequence in F
∞
q . Every polynomial g ∈ Fq[x] that

annihilates σ is called a characteristic polynomial of σ.

Let σ ∈ F
∞
q be periodic. The set

Jσ = {g ∈ Fq[x] : g(T )σ = 0}

of all characteristic polynomials of σ is an ideal of the polynomial ring Fq[x]. Since
Jσ contains at least one nonzero polynomial, for instance, g(x) = xper(σ) − 1, and
Fq[x] is a principal ideal domain, there is a unique monic polynomial mσ ∈ Fq[x]
which generates Jσ. That is,

Jσ = (mσ) = {hmσ : h ∈ Fq[x]}.

This polynomial is called the minimal polynomial of σ. Thus, the minimal poly-
nomial of a periodic sequence σ is the uniquely determined monic polynomial in
Fq[x] that divides each characteristic polynomial of σ. The linear complexity of σ
is defined as the degree of the minimal polynomial of σ. The order of the minimal
polynomial of σ is equal to the least period of σ [21, Theorem 8.44].

Another interesting approach to the minimal polynomial of a periodic sequence
makes use of generating functions. We assign to an arbitrary sequence σ = (sn)∞n=0

in F
∞
q the generating function

Gσ(x) = s0x
−1 + s1x

−2 + s2x
−3 + · · · ,

which is an element of the field Fq((x
−1)) of formal Laurent series in the indeter-

minate x−1. The field Fq((x
−1)) contains the field Fq(x) of rational functions as a

subfield.
The use of generating functions of the above form in the study of sequences with

elements from an arbitrary field, instead of the frequently used formal power series
s0 + s1x+ s2x

2 + · · · , was suggested by Niederreiter in [27], [28], where the following
two propositions appeared.
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Proposition 1A. Let σ = (sn)∞n=0 be a sequence of elements of Fq, and let g be
a monic polynomial over Fq with g(0) 6= 0. Then σ is a periodic sequence with
characteristic polynomial g if and only if

∞
∑

n=0

snx−n−1 =
f(x)

g(x)

with f ∈ Fq[x] and deg(f) < deg(g).

Proof. See Niederreiter [27], [28].

Proposition 2A. Let σ = (sn)∞n=0 be a sequence of elements of Fq, and let m be
a monic polynomial over Fq with m(0) 6= 0. Then σ is a periodic sequence with
minimal polynomial m if and only if

∞
∑

n=0

snx−n−1 =
h(x)

m(x)

with h ∈ Fq[x], deg(h) < deg(m), and gcd(h, m) = 1.

Proof. This follows from Proposition 1A and the definition of the minimal polyno-
mial, see [27], [28].

The next result is due to Laksov [20].

Propositon 3A. Let σ = (sn)∞n=0 be a periodic sequence of elements of Fq with least
period p. Then the minimal polynomial m ∈ Fq[x] of σ is given by

m(x) =
xp − 1

gcd(xp − 1, f(x))
,

where f(x) = s0x
p−1 + s1x

p−2 + · · · + sp−1.

Proof. This follows immediately from the preceding two propositions. See also
Laksov [20, Lemma 3].

Propositon 4A. Let σ1, . . . , σr be periodic sequences in F
∞
q with minimal polyno-

mials mi ∈ Fq[x], 1 ≤ i ≤ r. If the polynomials m1, . . . , mr are pairwise relatively
prime, then the minimal polynomial of the sum σ = σ1 + · · · + σr is equal to the
product m1 · · ·mr. Conversely, let σ be a periodic sequence in F

∞
q whose minimal

polynomial m ∈ Fq[x] is the product of pairwise relatively prime monic polynomials
m1, . . . , mr ∈ Fq[x]. Then, for each i = 1, . . . , r, there exists a uniquely determined
periodic sequence σi with minimal polynomial mi ∈ Fq[x] such that σ = σ1 + · · ·+σr.

Proof. The first part of the proposition coincides with Theorem 8.57 in Lidl und
Niederreiter [21, p. 426]. A proof of the second part can be found in [12, Korollar
2.5] and in [8, Lemma 6].
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If σ is a periodic sequence in F
∞
q , then for any polynomial f ∈ Fq[x], the sequence

τ = f(T )σ is also a periodic sequence in F
∞
q . A natural question then is to ask how

the minimal polynomials of σ and τ are related to each other.

Propositon 5A. Let σ be a periodic sequence in F
∞
q with minimal polynomial mσ ∈

Fq[x], and let f be a nonzero polynomial over Fq. Then the minimal polynomial of
τ = f(T )σ is given by

mτ =
mσ

gcd(f, mσ)
.

Proof. There are at least three different proofs available in the literature for the
assertion: Niederreiter [26, Lemma 1], Blackburn [1, Proposition 1], Gammel and
Göttfert [8, Lemma 3].

Propositon 6A. Let σ be a periodic sequence in F
∞
q with charcteristic polynomial

g ∈ Fq[x], and let f be a nonzero polynomial over Fq. Then

g

gcd(f, g)

is a characteristic polynomial of τ = f(T )σ.

Proof. The minimal polynomial mσ divides the characteristic polynomial g. It fol-
lows that mσ/ gcd(f, mσ) divides g/ gcd(f, g) for every polynomial f ∈ Fq[x]. For the
given nonzero polynomial f , the first expression is equal to the minimal polynomial
of τ = f(T )σ by Proposition 5A. Hence, g/ gcd(f, g) is a characteristic polynomial
of τ .

We conclude this section with the proof of Lemma 7.

Proof of Lemma 7. It suffices to carry out the details of the proof for the product
of two such sequences σ and τ . The general statement then follows by induction.
Consider the canonical factorization of the minimal polynomials mσ and mτ on
page 27. By Lemma 1, the irreducible polynomials f1, . . . , fs ∈ F2[x] are distinct
and deg(fi) divides S for 1 ≤ i ≤ s. Similarly, the irreducible polynomials g1, . . . , gt

are distinct and deg(gj) divides T for 1 ≤ j ≤ t. Since the sequences σ and τ are
periodic, their minimal polynomials mσ and mτ are not divisible by x. Thus, the
first-degree irreducible polynomial p(x) = x does not occur among the polynomials
f1, . . . , fs and g1, . . . , gt.

By Proposition 4A, the sequences σ and τ possess unique representations

σ =

s
∑

i=1

σi and τ =

t
∑

j=1

τj

where σi is a binary periodic sequence with minimal polynomial fi for 1 ≤ i ≤ s,
and τj is a binary periodic sequence with minimal polynomial gj for 1 ≤ j ≤ t. It
follows that

στ =

s
∑

i=1

t
∑

j=1

σiτj.
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By hypothesis, gcd(S, T ) = 1. It follows that for each i ∈ {1, . . . , s} and j ∈
{1, . . . , t}, the corresponding irreducible polynomials fi and gj have relatively prime
degrees. Invoking Lemma 3 and Lemma 5 of Section 4.1, we conclude that for each
i ∈ {1, . . . , s} and j ∈ {1, . . . , t}, the sequence σiτj has the irreducible minimal
polynomial fi ∨ gj ∈ F2[x].

As will be shown below, the irreducible polynomials fi∨gj, 1 ≤ i ≤ s, 1 ≤ j ≤ t,
are distinct. Another application of Proposition 4A therefore shows that the minimal
polynomial of στ has the form

mστ =

s
∏

i=1

t
∏

j=1

(fi ∨ gj). (32)

It remains to show that the polynomials fi∨gj, 1 ≤ i ≤ s, 1 ≤ j ≤ t, are distinct.
To see this, let fi and f ′

i be any two factors from the canonical factorization of mσ,
and let gj and g′

j be any two factors from the canonical factorization of mτ . Assume
to the contrary that the two irreducible polynomials fi ∨ gj and f ′

i ∨ g′
j are equal.

Note that two monic irreducible polynomials over the finite field Fq are equal if and
only if they have a common root (in some extension field of Fq). Let γ be a common
root of fi ∨ gj and f ′

i ∨ g′
j. Then we can write γ in the form

γ = αβ = α′β ′, (33)

where α, β, α′, and β ′ are roots of the polynomials fi, gj, f ′
i , and g′

j, respectively.
Since α is a root of the irreducible polynomial fi, we have α ∈ F2deg(fi) , which is
a subfield of F2S , as deg(fi) divides S. Similarly, we conclude that α′ ∈ F2S and
β, β ′ ∈ F2T . From (33) we obtain

α

α′
=

β ′

β
. (34)

Clearly, α/α′ ∈ F2S and β ′/β ∈ F2T . Since S and T are relatively prime we have
F2S ∩ F2T = F2, so that both sides of (34) must be equal to 1. Hence α = α′ and
β = β ′. This, however, implies fi = f ′

i and gj = g′
j.
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8 Appendix B

Let A be a binary primitive N -stage FSR, and let f be an irreducible polynomial
over F2. We want to know whether or not f is a divisor of the minimal polynomial
of A (compare Definition 2). We can restrict ourselves to irreducible polynomials
whose degrees divide N and are greater than 1. Any irreducible polynomial f which
does not meet these requirements is definitely not a factor of the minimal polynomial
of A by Lemma 1.

Proposition 1B. Let A be a binary primitive N-stage FSR, and let f be a binary
polynomial whose degree d divides N and is greater than 1. Then f divides the
minimal polynomial of A if and only if the first d terms of the sequence τ = h(T )σ
are not all zero. Here h(x) = (xp − 1)/f(x), p = 2N − 1, and σ is an arbitrary
nonzero output sequence of A.

Proof. Since xp − 1 is a characteristic polynomial of σ, Proposition 6A implies that

f(x) =
xp − 1

gcd(xp − 1, h(x))

is a characteristic polynomial of τ and, therefore, a multiple of the minimal polyno-
mial of τ . Since f is irreducible, we have either mτ = f or mτ = 1. The latter, of
course, means that τ is the zero sequence. Since τ has characteristic polynomial f
and deg(f) = d, τ = (tn)∞n=0 is the zero sequence exactly if (t0, t1, . . . , td−1) is the
zero vector of F

d
2. By Proposition 5A,

mτ =
mσ

gcd(mσ, h)
.

Thus, mτ = 1 if and only if gcd(mσ, h) = mσ. The latter is true if and only if mσ

divides h. The minimal polynomial mσ divides the polynomial h(x) = (xp−1)/f(x)
if and only if f is not a divisor of mσ.

Let σ = (sn)∞n=0 be a nonzero output sequence of the binary primitive N -stage
FSR A, and let τ = (tn)∞n=0, d, p, f(x), and h(x) be as in Proposition 1B. For

n ≥ 0 define the row vector s
(d)
n = (sn, sn+1, . . . , sn+d−1). Furthermore, define v =

(t0, t1, . . . , td−1) and write h(x) =
∑p−d

i=0 cix
i. By what we have just proved, f divides

mσ if and only if

v =

p−d
∑

i=0

cis
(d)
i 6= 0. (35)

If we want to compute the vector v ∈ F
d
2 by this formula, we encounter the fol-

lowing problem: The natural order in which the row vectors s
(d)
i are produced is

s
(d)
0 , s

(d)
1 , . . . , s

(d)
p−d, whereas the order in which the coefficients ci of the polynomial

h(x) are produced—using the division algorithm—is cp−d, cp−d−1, . . . , c0. This means
that in order to compute the row vector v in (35), we need to store either a full
portion of the period of σ or all positions i, 0 ≤ i ≤ p − d, for which ci = 1. For
shift register lengths N ≥ 40, this becomes a hardship.

There are two ways to overcome this problem: We can use a modified feedback
function that produces the row vectors s

(d)
i in reverse order (see Walker [34, p. 373]).
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Or we can use the reciprocal polynomial of f in the division algorithm. The recipro-
cal polynomial f ∗ of the polynomial f(x) = xd + ad−1x

d−1 + · · ·+ a1x+ a0 is defined
to be the polynomial

f ∗(x) = xdeg(f)f
(1

x

)

= a0x
d + a1x

d−1 + · · · + ad−1x + 1.

Replace in

xp − 1

f(x)
= h(x) =

p−d
∑

i=0

cix
i

the variable x by 1/x and multiply the result by xp−d. This yields

xp − 1

f ∗(x)
= xp−dh

(1

x

)

=

p−d
∑

i=0

cix
p−d−i.

In other words, the division algorithm performed for the polynomials xp − 1 and
f ∗(x) produces the coefficients ci, that are needed in (35), in the desired order.
This drastically reduces the storage requirements in the computation of v. Putting
everything together, we arrive at Algorithm A in Section 2.3.
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