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Abstract
We propose a new additive binary stream cipher called Achterbahn. The

keystream generator (KSG) consists of eight primitive binary nonlinear feedback
shift registers (NLFSR’s). A binary N -stage feedback shift register is called
primitive if it has a cycle of length 2N − 1 containing all binary nonzero N -
tuples. Each shift register has a configurable linear feedforward output function.
The output sequences of the shift registers are combined by a balanced 4th-
order correlation immune Boolean combining function of eight variables and of
algebraic degree three. Due to the modifiable shift register output functions,
the KSG is able to produce an ensemble of 264 (respectively of 280) cyclically
inequivalent sequences. All sequences have periods larger than 2207 and linear
complexities larger than 285. The size of the secret key is 80 bits. The feedback
functions of the driving NLFSR’s promote fast hardware implementations. In
the high-speed implementation a throughput of more than 8 Gbps is reached.

Keywords. Nonlinear feedback shift registers, additive stream ciphers.
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1 Introduction

The proposed stream cipher Achterbahn is a binary additive stream cipher. In a binary
additive stream cipher, the plaintext is given as a string m0, m1, . . . of elements of the
finite field F2. The keystream z0, z1, . . . is a binary pseudo-random sequence. The
sender encrypts the plaintext message according to the rule ct = mt + zt for all t ≥ 0.
The ciphertext c0, c1, . . . is decrypted by the receiver by adding bitwise the keystream
z0, z1, . . . to the received ciphertext sequence c0, c1, . . . . Sender and receiver produce
the keystream z0, z1, . . . via identical copies of the key stream generator (KSG).

The basic ingredients of the keystream generator are eight binary nonlinear feedback
shift registers (NLFSR’s) of lengths between 22 and 31, and a balanced 4th-order
correlation immune Boolean combining function R : F

8
2 → F2. The NLFSR’s are such

that they can produce binary sequences of period 2N − 1, where N is the length of the
shift register. Each shift register has a constant nonlinear feedback function, governing
the internal state of the shift register, and an adjustable linear feedforward output
function. The output functions of the eight NLFSR’s deliver the input sequences for
the Boolean combining function R which in turn outputs the running key.

The output functions of the underlying feedback shift registers (FSR’s), and thus
the output function of the KSG, are changed after each resynchronization step. Se-
quences produced under different configurations are cyclically inequivalent. There are
264 (respectively 280) possibilities for the configuration of the KSG, so that the KSG
is able to generate an ensemble E of 264 (respectively of 280) translation distinct peri-
odic sequences each of which has period larger than 2207 and linear complexity larger
than 285. The key-loading algorithm to be described below has the following prop-
erty: Let the key K ∈ F

80
2 be fixed, then any two different initial values IV and IV ′

always result in two different output functions of the KSG. As a consequence, the pro-
duced keystream segments between any two resynchronization steps belong to distinct
sequences of the ensemble E . Thus any unintended re-use of key material is excluded.

The NLFSR’s have been selected under the objective to enable fast hardware imple-
mentations of the KSG. In a straightforward implementation, the KSG emits one bit of
keystream per clock cycle. In the high-speed implementation, the KSG generates one
byte of keystream within each clock cycle. The eight bits forming this byte are the same
eight bits that could have been generated within eight clock cycles using the straightfor-
ward implementation. It is important to note that the acceleration of encryption and
decryption speed is achieved via a special implementation of the underlying NLFSR’s
and by duplicating the Boolean combining function but without introducing any new
cryptographic components in the design (like multi-output Boolean functions).

2 Detailed description of the keystream generator

The overall structure of the keystream generator is depicted in the Figure 1. The core of
the KSG consists of eight primitive (in the sense of Definition 1 in Appendix A) binary
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NLFSR’s labelled with capital letters A, B, C, . . . , H . Each NLFSR is endowed with
a linear feedforward logic described by filter polynomials a(x), b(x), c(x), . . . , h(x).
The linear feedforward logics supply the Boolean combining function R with inputs.
The function R then outputs the keystream. At the outset—under the control of the
secret key K and a public initial value IV —all eight NLFSR’s are loaded and all linear
feedforward functions are adjusted.

ciphertext

filter aNLFSR A

filter bNLFSR B

filter cNLFSR C

filter dNLFSR D

filter eNLFSR E

filter fNLFSR F

filter gNLFSR G

filter hNLFSR H

IVkey
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message
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Figure 1: The keystream generator

2.1 The Boolean combining function

The Boolean combining function R : F
8
2 → F2 has algebraic degree 3 and nonlinearity

64. The algebraic normal form of R is given by

R(y1, y2, . . . , y8) = y1 + y2 + y3 + y4 + y5y7 + y6y7 + y6y8

+ y5y6y7 + y6y7y8.
(1)

Using the logical OR-symbol ∨, defined by a ∨ b = a + b + ab for all a, b ∈ F2, the
function R can be represented in the form
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R(y1, y2, . . . , y8) = y1 + y2 + y3 + y4 + y5y7 ∨ y6y7 ∨ y6y8. (2)

The Boolean function R is balanced and 4th-order correlation immune. The algebraic
degree 3 is large enough to guarantee that the produced keystream ζ = (zt)

∞
t=0 will have

linear complexity larger than 285. The order 4 of correlation immunity is the maximum
possible value for balanced, 8-variable, Boolean functions of algebraic degree 3 (see
Siegenthaler [34]). There are other 8-variable Boolean functions of algebraic degree 3
having order of resiliency 4. The particular one presented in (1) and (2) was chosen
because it has a simple realization in hardware. See Figure 2.

z

y

5
y

1
y

2
y

3
y

4
y

7
y

8
y

6

Figure 2: The Boolean Combining Function

In the high-speed implementation of the stream cipher, the KSG contains eight copies
of the Boolean function R.

2.2 The feedback shift registers

The principal components of the KSG are eight binary primitive nonlinear feedback
shift registers. Throughout the proposal these NLFSR’s will be labelled by the capital
letters A, B, C, . . . , H . The lengths, periods, linear complexities, and nonlinearities
of the eight NLFSR’s are given in the following table. Periods and linear complexities
of a binary primitive FSR are understood in the sense of Definition 3 in Appendix A.
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NLFSR’s

label length period linear complexity nonlinearity

A 22 222 − 1 LA = 222 − 13 30208

B 23 223 − 1 LB = 223 − 2 245760

C 25 225 − 1 LC 499712

D 26 226 − 1 LD 233472

E 27 227 − 1 LE 983040

F 28 228 − 1 LF 237568

G 29 229 − 1 LG 999424

H 31 231 − 1 LH 999424

Of course, the listing of the periods is redundant, as a primitive binary FSR of
length N has, by definition, period 2N − 1. Note that shift registers G and H have the
same nonlinearities.

The computations of the linear complexities of the NLFSR’s are currently (30 April
2005) in progress. For the NLFSR’s A and B we found LA = 222 − 13 and LB =
223 − 2, respectively. One can with good reason expect that the linear complexities
LC , . . . , LH of the remaining six feedback shift registers will also turn out to be close
to the periods. This expectation is supported by experimental observations on a vast
number of randomly selected primitive binary NLFSR’s carried out by the authors
over the last two years, as well as by theoretical investigations of Rueppel [31], Dai
and Yang [8], and Meidl and Niederreiter [24], concerning the linear complexity of
periodically repeated random strings.

At any rate until the computations of the linear complexities for the remaining
NLFSR’s will be completed, we shall be very conservative assuming that the linear
complexities of the involved primitive NLFSR’s are only greater than half the periods.
Thus we shall assume in the sequel that LC ≥ 224, LD ≥ 225, LE ≥ 226, LF ≥ 227,
LG ≥ 228, and LH ≥ 230. The feedback functions of the eight driving NLFSR’s are
presented in Appendix C.

There is another NLFSR contained in the KSG. This NLFSR is labelled by the
capital letter V . The shift register V is nonsingular but not primitive. It has length
64 and nonlinearity 64700416. Feedback shift register V is used to determine the
configuration of the output function of the KSG. The feedback function of shift register
V is given by

V (x0, x1, . . . , x63) = 1 + x0 + x3 + x7 + x10 + x12 + x27 + x28 + x38 + x46

+ x47 + x8x20 + x17x23 + x24x25 + x29x31 + x33x34x37

+ x1x3x9x10 + x39x41x51x52.
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Remark. It is likely that the requested IV -size for a PROFILE 2-stream cipher
in ECRYPT’s call for stream cipher primitives will be extended to 80 bits. See De
Cannière, Lano and Preneel [9], and Hong and Sarkar [16]. In this case, the above
NLFSR V of length 64 will be replaced by another NLFSR of length 80.

2.3 The linear feedforward functions

Each feedback shift register A, B, C, . . . , H is endowed with a configurable linear
feedforward output function. The linear feedforward output function can be described
by the filter polynomial (see Appendix A). The binary filter polynomial a(x) for NLFSR
A has degree at most 6. All filter polynomials will have nonzero constant terms. Thus
the polynomial a ∈ F2[x] has the form

a(x) = a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + 1.

There are 26 = 64 possibilities for the filter polynomial a(x), corresponding to the six
binary coefficients a1, a2, . . . , a6. For the NLFSR A, we depict the situation in Figure 3.

)

a(x)

D0D21 D20

τ
A

0A(x , x 1 , ... , x 21

Figure 3: Linear feedforward function for NLFSR A

Enlarging the right part of Figure 3, we get:
If the coefficient aj = 1, 1 ≤ j ≤ 6, the corresponding wire in Figure 4 is connected

and the content of cell Dj contributes to the output. If aj = 0, the wire is disconnected
and the content of Dj is ignored. Note that cell D0 is always connected to the output
line. If all six coefficients of a(x) are zero, in other words, if the filter polynomial is
equal to the constant polynomial a(x) = 1, the standard output sequence σA = (sn)∞n=0

is emitted. Using the shift operator T , defined by Tσ = (sn+1)
∞
n=0 for all σ = (sn)∞n=0 ∈

F
∞
q , we can write the output sequence τA = (tn)∞n=0 in the form τA = a(T )σA.

The filter polynomials that will determine the output values of the eight shift reg-
isters A, B, C, . . . , H are designated by a(x), b(x), c(x), . . . , h(x), respectively. The
degrees of the filter polynomials are restricted according to deg(a) ≤ 6, deg(b) ≤ 7,
deg(c) ≤ 7, deg(d) ≤ 8, deg(e) ≤ 8, deg(f) ≤ 9, deg(g) ≤ 9, and deg(h) ≤ 10. Note
that the sum of the maximum permissible degrees of all eight filter polynomials is 64.
As a consequence, the KSG has 264 different configurations for its output function.
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Theorem 1. If the NLFSR’s A, B, C, . . . , H are loaded with any nonzero initial
state vectors, then for all filter polynomials a(x), b(x), c(x), . . . , h(x), the produced
output sequences τA, τB, τC, . . . , τH have periods 2N − 1, where N is the length of the
corresponding shift register.

Proof. Let mA(x), mB(x), mC(x), . . . , mH(x) be the minimal polynomials associated
with the NLFSR’s A, B, C, . . . , H , respectively. By Theorem 19 it suffices to check
that each of the polynomials mA(x), mB(x), mC(x), . . . , mH(x) is divisible by a binary
primitive polynomial of degree N , where N is the length of the corresponding shift
register. Given a periodic binary sequence σ of period P = 2N − 1, it can be checked
whether or not a given binary polynomial f of degree N divides the minimal polynomial
mσ of σ without actually knowing the minimal polynomial mσ. One merely has to
check whether the polynomial g(x) = (xP − 1)/f(x) is still a characteristic polynomial
of σ. The polynomial f divides mσ precisely if g is not a characteristic polynomial
of σ. See Corollary 1. In this manner we verified that each minimal polynomial
mA(x), mB(x), mC(x), . . . , mH(x) is divisible by some primitive binary polynomial of
the required degree.

Theorem 2. If the NLFSR’s A, B, C, . . . , H are loaded with any nonzero initial
state vectors, then for all filter polynomials a(x), b(x), c(x), . . . , h(x), the produced
output sequences τA, τB, τC , . . . , τH have linear complexities greater or equal to L′

A,
L′

B, L′
C , . . . , L′

H , where these numbers are related to the linear complexities LA, LB,
LC, . . . , LH of the shift registers A, B, C, . . . , H as follows: L′

A = LA − 2, L′
B = LB,

L′
C = LC − 5, L′

D = LD − 2, L′
E = LE − 6, L′

F = LF − 9, L′
G = LG, L′

H = LH .

Proof. By Definition 3, the linear complexity of NLFSR A, say, is equal to the linear
complexity of any nonzero standard output sequence σA. In other words, LA = L(σA).
The filter-output sequence τA is related to σA by τA = a(T )σA, where a ∈ F2[x] is the
applied filter polynomial. The assertion now follows from Theorems 13 and 18.

A

DDDDDD D013456 2

a a a a a a
123456

τ

Figure 4: Linear feedforward function for NLFSR A: enlarged
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Theorem 15 in Appendix A shows that the sequences τA, τB, τC , . . . , τH have good
distribution properties.

Remark. If PROFILE 2-stream ciphers in ECRYPT’s call for stream cipher primitives
will be requested to handle 80 bit IV -lengths, the above mentioned restrictions on the
degrees of the filter polynomials will be redefined in such a way that the sum of the
maximum permissible degrees of all eight filter polynomials is 80. As a consequence, the
KSG will possess 280 different configurations and will be able to produce 280 cyclically
inequivalent periodic sequences.

2.4 Linear complexity and period of the keystream

Let τA, τB, τC , . . . , τH be the output sequences of the eight driving NLFSR’s. The
sequences are combined by the Boolean combining function R to produce the keystream
ζ = (zt)

∞
t=0. The Boolean combining function is described in equation (1). The output

sequences of the shift registers are assigned to the inputs of R according to the mapping:

Input variable y1 y2 y3 y4 y5 y6 y7 y8

NLFSR A C D E B G H F

Therefore,

ζ = R(τA, τC , τD, τE, τB, τG, τH , τF ) = τA + τC + τD + τE + τBτH

+ τGτH + τF τG + τBτGτH + τF τGτH .
(3)

The objective is to derive lower bounds for the period and linear complexity of ζ . We
give some hints to the proof and will then state the results. Theorems 18 and 20
provide information on the minimal polynomials of τA, τB, τC , . . . , τH . Theorem 21
yields the minimal polynomials of the product sequences appearing in (3). Theorem 12
now yields information on the minimal polynomial mζ of ζ . The linear complexity of
ζ is assessed using Corollary 2, L(ζ) = deg(mζ), and Theorem 16. The period of ζ
is determined using Corollary 2, per(ζ) = ord(mζ), Theorem 17, and Lemma 1. We
summarize the results.

Theorem 3. The canonical factorization of the minimal polynomial of the keystream
ζ consists only of irreducible binary polynomials of degrees 2, 3, 5, 9, 11, 13, 22, 25,
26, 27, 58, 116, 203, 406, 713, 812, 899, 1798, 3596, 6293, 12586, 20677, and 25172.
All irreducible polynomials have multiplicity one.

Theorem 4. For all 264 configurations of the output function of the KSG corresponding
to all possible combinations of the filter polynomials a(x), b(x), c(x), . . . , h(x), and
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for all initializations of the eight NLFSR’s with nonzero initial state vectors, the linear
complexity L(ζ) of the produced keystream ζ satisfies

L(ζ) ≥ L′
A + L′

C + L′
D + L′

E + L′
BL′

H + L′
GL′

H

+ L′
F L′

G + L′
BL′

GL′
H + L′

F L′
GL′

H − 4,
(4)

where the primed numbers are related to the linear complexities LA, LB, LC, . . . , LH of
the underlying NLFSR’s by the equations L′

A = LA − 2 = 222 − 15, L′
B = LB = 223 − 2,

L′
C = LC − 5, L′

D = LD − 2, L′
E = LE − 6, L′

F = LF − 9, L′
G = LG, and L′

H = LH .
Under the assumption made in Section 2.2 we obtain

L(ζ) ≥ 285. (5)

Theorem 5. For all 264 configurations of the output function of the KSG corresponding
to all possible combinations of the filter polynomials a(x), b(x), c(x), . . . , h(x), and for
all initializations of the eight NLFSR’s with nonzero initial state vectors, the produced
keystream ζ has period

per(ζ) =
1

9

(
222 − 1

) (
223 − 1

) (
225 − 1

) (
226 − 1

)
· (227 − 1

) (
228 − 1

) (
229 − 1

) (
231 − 1

)
.

(6)

This implies that
per(ζ) ≥ 2207. (7)

Remark. In the case that our stream cipher will have to be adapted to meet the
80 bit IV -size request, the KSG of the adapted stream cipher will then possess 280

different configurations for its output function rather than 264. The formulas (4), (5),
(6), and (7) will still hold. Only the relationships between the linear complexities LA,
LB, LC , . . . , LH , and L′

A, L′
B, L′

C , . . . , L′
H may change slightly. For instance, relation

L′
E = LE − 6 must then be replaced by L′

E = LE − 9.

3 The key-loading algorithm

The length of the secret key K is 80 bits. The bit length l of the initial value can be any
number in {0, 8, 16, 24, 32, 40, 48, 56, 64}, where l = 0 means that no resynchronisations
will be performed. We first concatenate the key K and the initial value IV to obtain
the interim key ur = (K, IV ) = (k0, k1, . . . , k79, i0, i1, . . . , il−1) = (u0, u1, . . . , ur−1).
The length r of the interim key is r = 80 + l, and can thus take on any value in
{80, 88, 96, 104, 112, 120, 128, 136, 144}. The key-loading algorithm consists of several
steps.
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Step 1. (Load in parallel.) Load the first bits of the interim key ur = (u0, u1, . . . , ur−1)
into the eight NLFSR’s A, B, C, . . . , H , and into the configuration register V . If the
relevant shift register has length N , it receives the N bits u0, u1, . . . , uN−1. Cell Dj

will contain the element uj for 0 ≤ j ≤ N − 1. The loading of the shift register cells is
performed in parallel. All 211 cells of the eight driving shift registers and the 64 cells
of the configuration register are loaded simultaneously in order to avoid the leakage of
side channel information.

Step 2. (Load in serially.) Feed-in into each FSR all bits of the interim key ur =
(u0, u1, . . . , ur−1) that have not already been loaded into the register in Step 1. If the
regarded shift register has length N , the bits uN , uN+1, . . . , ur−1 are fed into the register
in serial. At each clock pulse, the feedback value and the current element uj are added,
and the obtained value is fed into cell DN−1 of the shift register.

Step 3. (Set the content of D0 to 1.) In each of the eight FSR’s A, B, C, . . . , H ,
overwrite the content of cell D0 with the bit 1. This operation makes sure that no
driving NLFSR will be set to the all-zero state. For the configuration register V , the
all-zero state is as good as all other states. Thus the element in cell D0 of the register
V is not overwritten.

Step 4. (Warm-up.) Each of the shift registers A, B, C, . . . , H performs N + 32
shifts, where N is the length of the shift register. For instance, NLFSR A performs
54 warm-up shifts. The longest shift register, NLFSR H , performs 63 warm-up shifts.
The given number of warm-up shifts for each shift register has the consequence that
all eight driving NLFSR’s achieve their final states simultaneously. The configuration
register V performs 48 warm-up shifts.

The final state of the register V defines the configuration of the linear feedforward
output function for each driving NLFSR. Suppose the cells D0, D1, D2, . . . , D62, D63 of
the register V contain the bits a1, a2, a3, . . . , h9, h10, then the filter polynomials defining
the configurations of the linear feedforward functions, are given by

a(x) = a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + 1,

b(x) = b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + 1,

c(x) = c7x
7 + c6x

6 + c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x + 1,

d(x) = d8x
8 + d7x

7 + d6x
6 + d5x

5 + d4x
4 + d3x

3 + d2x
2 + d1x + 1,

e(x) = e8x
8 + e7x

7 + e6x
6 + e5x

5 + e4x
4 + e3x

3 + e2x
2 + e1x + 1,

f(x) = f9x
9 + f8x

8 + f7x
7 + f6x

6 + f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x + 1,

g(x) = g9x
9 + g8x

8 + g7x
7 + g6x

6 + g5x
5 + g4x

4 + g3x
3 + g2x

2 + g1x + 1,

h(x) = h10x
10 + h9x

9 + h8x
8 + h7x

7 + h6x
6 + h5x

5 + h4x
4 + h3x

3 + h2x
2 + h1x + 1.

Using Lemma 1 of Rueppel, Lai, and Woollven [20], and the fact that all NLFSR’s
are nonsingular, the following two theorems can be proved.
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Theorem 6. Consider any one of the eight driving NLFSR’s of the KSG. Let N be
the length of the shift register. Then there are exactly 2N−1 different states into which
the shift register can be loaded as the result of the described key-loading algorithm. If
all input vectors ur = (u0, u1, . . . , ur−1) are equally likely, then each possible state of
the shift register is attained with the same probability.

Theorem 7. By applying the described key-loading algorithm, the NLFSR V can be
loaded into any of its 264 different states. If all input vectors ur = (u0, u1, . . . , ur−1)
are equally likely, then each possible state of the shift register is attained with the same
probability. In other words, any of the 264 translation distinct sequences that the KSG
is able to produce has the same chance to be selected.

Remark. The described key-loading algorithm can easily be adapted to handle 80 bit
IV -lengths.

4 Design rationale

Various attacks are known on stream ciphers based on linear feedback shift registers
(LFSR’s). We mention fast correlation attacks of Meier and Staffelbach [25], algebraic
attacks of Courtois and Meier [7], and fault analysis attacks of Hoch and Shamir [15].
In a recent talk, Canteaut [6] gave a state of the art overview on algebraic attacks on
LFSR based stream ciphers. One reason for choosing nonlinear feedback shift registers
as building blocks in our stream cipher was to avoid such attacks.

Here are some remarks concerning the deployed NLFSR’s. See Appendix C. Note
that the NLFSR’s are relatively sparse, considering that the algebraic normal form
of the feedback function of a nonsingular binary N -stage NLFSR can contain 2N−1

nonzero terms. However, sparser primitive binary NLFSR’s do exist. Note that each
feedback function in Appendix C contains not only quadratic terms but also at least
one cubic term and one term of order 4. The higher order terms increase the complexity
of an algebraic attack.

As mentioned earlier, the Boolean combining function R is 4th-order correlation
immune. Therefore, an attacker must select at least five NLFSR’s in order to run a
classical correlation attack. The sum of the lengths of the smallest five NLFSR’s is
123. Taking into account that—due to Step 3 in the key-loading algorithm—for each
shift register half of all possible initial states can be ruled out, there remain 2118 initial
settings for the five NLFSR’s. For each setting a bit string of some length must be
computed and compared with the actual keystream. Obviously the attack is more
complex than exhaustive key search.

One might argue that we provided an unnecessary high security margin. Certainly, a
similar stream cipher based on seven NLFSR’s of comparable lengths with a suitable 7-
variable, 3rd-order correlation immune Boolean combining function would still push the
above correlation attack beyond the complexity of exhaustive key search. One reason
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that we chose eight NLFSR’s is that the additional NLFSR will add to the statistical
quality of the produced keystream. At any rate high complexity distinguishing attacks
become a growing threat to today’s stream cipher systems, so that the extra shift
register seems to be a good investment. We subjected the output sequence of the KSG
to 164 statistical tests [21] which were all passed. The most stringent 60 tests evaluated
approximately 243 bits.

With regard to the potential leakage of side channel information the key-loading
algorithm is the most sensitive part in a stream cipher. The goal of Step 1 in the above
described key-loading algorithm is to prevent the leakage of side channel information
during key-setup. Another advantage of the parallel loading in Step 1 is the reduction
of the resynchronization time.

The algebraic degree of the Boolean combining function is 3. The algebraic degree
3 was chosen to guarantee that the linear complexity of the keystream is larger than
2key length.

We hereby state that we are not aware of any hidden weaknesses of the proposed
stream cipher. Furthermore, the stream cipher does not seem to have any weak keys.

5 The reduced keystream generator

In a reduced form of the KSG, the ability of changing the configuration of the output
function of the KSG after each resynchronisation step has been dropped. No linear
feedforward logics are implemented in the reduced KSG. Instead the standard output
function for each shift register is used. In the standard output function at each clock
pulse, the content of cell D0 is forwarded to the Boolean combining function R. In
order to distinguish it from the reduced KSG, we call the KSG discussed so far the full-
fledged KSG. Note that the standard output function of the reduced KSG corresponds
to the special configuration of the linear feedforward functions in the full-fledged KSG
in which all eight filter polynomials are equal to 1. That is, a(x) = 1, b(x) = 1,
c(x) = 1, . . . , h(x) = 1.

While the full-fledged KSG can produce 264 (respectively 280) cyclically inequivalent
sequences of period larger than 2207, the reduced KSG can produce only one sequence of
period larger than 2207. In the full-fledged KSG, the secrecy lies both in the particular
sequence that has been chosen from the ensemble and in the initial phase (the starting
point) of that sequence. In the reduced KSG, the secrecy lies solely in the unknown
initial phase. In chapter 7 of his dissertation [17], Jansen introduces the concepts of
phase uncertainty profile and sequence uncertainty profile. The latter concept can only
be applied to stream ciphers which are capable to produce an ensemble of different
sequences. The conclusions that Jansen draws after investigating the behavior of the
mentioned uncertainty profiles were the main reason for us to advocate a stream cipher
based on the full-fledged KSG.

However, the stream cipher variant based on the reduced KSG should also be re-
garded as an option. In the corresponding reference implementations, we found that
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the design size of the full-fledged KSG corresponds to 2988 gate equivalents, whereas
the design size of the reduced KSG amounts to 2173 gate equivalents. Thus the re-
duced KSG is in particular of interest if gate count and power consumption become
determining factors. Despite the superiority of the full-fledged KSG over the reduced
KSG from an information theoretical point of view, it might very well be the case that
the stream cipher using the reduced KSG will also be secure against known attacks,
insofar that the computational complexity of any such attack might be larger than
exhaustive key search.

6 Parallel implementation

The speed of keystream generation and thus the encryption rate of the stream cipher
can be increased by choosing accelerated hardware implementations for the eight driv-
ing NLFSR’s. Instead of shifting the content of one flip-flop to the next flip-flop in line,
in an accelerated implementation of the FSR, a few intermediate flip-flops are skipped.
In order that the accelerated shift register can accommodate all flip-flops with the cor-
rect input at each clock pulse, the feedback logic must be duplicated. The number of
flip-flops remains the same. The concept of increasing the performance of a FSR, by
taking larger step sizes, is best explained on an example. Consider the 9-stage NLFSR
defined by the feedback function

F (x0, x1, . . . , x8) = x0 + x7 + x1x2.

The regular implementation of this FSR is depicted in the following figure:
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If we choose step size k = 2, the corresponding fast implementation looks like this:
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The next figure shows the implementation of the FSR for step size k = 4.
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One leading point in the selection process of the deployed NLFSR’s was their ability
to facilitate fast hardware implementations up to a factor of eight. This is the reason
that in all feedback functions the last seven variables appear only linearly.

In the high-speed implemention of the KSG not only the encryption rate is in-
creased. The key-loading algorithm is also accelerated. See the table in Section 7.

7 Hardware considerations

In Table 1, the Achterbahn stream cipher is compared with the stream ciphers E0,
A5/1, and RC4 and with three different implementations of the Advanced Encryp-
tion Standard (AES). The design size (given in gate equivalents, GE), throughput,
frequency, efficiency, maximum throughput, maximum frequency, crytical path, and
resynchronisation times are listed. Four different implementations of the stream ci-
pher Achterbahn are discussed. The straightforward implementation, where one bit
of keystream is generated per clock cycle, is abbreviated as serial. The terms 2-bit-
parallel, 4-bit-parallel, and 8-bit-parallel refer to the accelerated implementations, in
which the underlying FSR’s operate with step sizes k = 2, 4, and 8, respectively. The
numbers in the parenthesis refer to the reduced KSG. For more background on the
mentioned figures of merit, we refer to Appendix B.
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8 Conclusion

We proposed a new synchronous stream cipher called Achterbahn. The core of the
keystream generator consists of eight primitive binary nonlinear feedback shift reg-
isters. Each shift register is endowed with a configurable linear feedforward output
function. The produced output sequences are combined by a balanced, 8-variable, 4th
order correlation immune Boolean combining function of algebraic degree 3. In the
key-loading algorithm, the initial states of the nonlinear feedback shift registers are de-
termined and, for each shift register, the configuration of its output function is defined.
Due to the modifications of the output functions, the keystream generator is able to
produce an ensemble of 264 translation distinct binary sequences. Each sequence has
period larger than 2207 and linear complexity larger than 285. The key-loading algo-
rithm receives as inputs the 80 bit secret key and a public initial value of up to 64
bits.

Based on parallel implementations of the underlying feedback shift registers, the
encryption speed of the stream cipher can be scaled by any positive integer factor less
than the length of the shortest feedback shift register. The feedback functions of the
applied shift registers specifically promote parallel implementations up to a factor of
eight. If the factor eight is chosen, the keystream generator will produce one byte of
keystream per clock cycle.

The potential to encrypt the eight lines (acht Bahnen) of an 8-bit bus in real time
was one reason for choosing the name Achterbahn. Another cause for the name is the
fact that eight feedback shift registers are the driving force in the keystream generator.
Furthermore, the number eight is reflected in the size of the secret key. There is yet
another more subtle motivation for the name. Achterbahn is the german word for roller
coaster. If people ride a state of the art roller coaster, some become addicted to it while
others get sick. We hope that the same will happen to the cryptographer who studies
our stream cipher and to the cryptanalyst who aims to break it.
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Appendix A

A Mathematical Background

Let Fq be the finite field of order q. The set of all sequences of elements of Fq is denoted
by F

∞
q . If we define for σ = (sn)∞n=0 ∈ F

∞
q and τ = (tn)∞n=0 ∈ F

∞
q and for c ∈ Fq the

sum σ + τ = (sn + tn)∞n=0 and the scalar product cσ = (csn)∞n=0, then F∞
q becomes a

vector space over Fq. An important linear operator on the vector space F∞
q is the shift

operator T , defined by Tσ = (sn+1)
∞
n=0 for all sequences σ = (sn)∞n=0 ∈ F

∞
q .

A sequence σ = (sn)∞n=0 in F
∞
q is called ultimately periodic if there are integers

n0 ≥ 0 and p ≥ 1 such that sn+p = sn for all n ≥ n0. The smallest such integers n0 and
p are called the preperiod and the period of σ, respectively. We then write per(σ) = p.
If sn+p = sn for all n ≥ 0, then the sequence is called periodic. Note that the expression
ultimately periodic allows the possibility that the sequence is actually periodic.

Any ultimately periodic sequence σ of F
∞
q possesses a unique polynomial mσ ∈ Fq[x],

called the minimal polynomial of σ. There are various approaches to the minimal
polynomial, one uses ideal theory. If g ∈ Fq[x] is a polynomial over Fq, then g(T )
defines a linear operator on the vector space F

∞
q . For instance, let g(x) = x3 + x + 1.

Then g(T )σ = T 3σ +Tσ +σ = (sn+3 + sn+1 + sn)∞n=0 for all σ = (sn)∞n=0 of F
∞
q . We say

that a polynomial g ∈ Fq[x] annulates σ, if g(T )σ is the zero sequence 0 = (0, 0, . . . ).
For instance, if σ = (sn)∞n=0 ∈ F

∞
q is ultimately periodic such that sn+p = sn for all

n ≥ n0, then g(x) = xn0+p − xn0 ∈ Fq[x] annulates σ. Thus, for every ultimately
periodic sequence σ ∈ F

∞
q ,

Jσ = {g ∈ Fq[x] : g(T )σ = 0}

is a nonzero ideal in the principal ideal domain Fq[x]. The minimal polynomial mσ of
σ is the unique monic polynomial over Fq generating Jσ, that is,

Jσ = (mσ) = {hmσ : h ∈ Fq[x]}.

Theorem 8. Let σ be an ultimately periodic sequence in F
∞
q . Any polynomial g ∈ Fq[x]

that annulates σ is called a characteristic polynomial of σ. A polynomial g ∈ Fq[x] is
a characteristic polynomial of σ if and only if mσ divides g.

Proof. The assertion follows directly from the fact that the minimal polynomial of σ
generates the ideal Jσ and from the definition of the characteristic polynomial of σ.

Corollary 1. Let σ be a periodic sequence in F
∞
q with minimal polynomial mσ ∈ Fq[x].

Let c ∈ Fq[x] be a characteristic polynomial of σ without multiple roots, and let f ∈ Fq[x]
be an irreducible factor of c. Then f divides mσ if and only if the polynomial g = c/f
is not a characteristic polynomial of σ.
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Proof. Since the minimal polynomial divides any characteristic polynomial we have
c = bmσ for some b ∈ Fq[x]. Clearly, g = c/f is a multiple of mσ if and only if f divides
b. Thus g is not a multiple of mσ if and only if f divides mσ.

The minimal polynomial mσ of an ultimately periodic sequence σ ∈ F
∞
q contains a

lot of information about σ.

1. The multiplicity of the element 0 as a root of mσ coincides with the preperiod of
σ. In particular, σ is periodic if and only if mσ(0) �= 0.

2. The polynomial mσ is the characteristic polynomial of the shortest linear feedback
shift register that can generate σ when appropriately initialized.

3. By definition, the linear complexity of σ is equal to the degree of mσ.

4. The order of the polynomial mσ coincides with the period of σ.

We restate the last property as a theorem.

Theorem 9. Let σ be an ultimately periodic sequence in F
∞
q with minimal polynomial

mσ ∈ Fq[x]. Then the period of σ is equal to the order of the minimal polynomial of σ,
denoted by ord(mσ).

Proof. See Lidl and Niederreiter [22, Theorem 8.44].

The order of a polynomial f is sometimes also called the period of f or the exponent
of f . We quote another theorem from [22] concerning the order of a polynomial.

Theorem 10. Let g1, . . . , gk be pairwise relatively prime nonzero polynomials over Fq,
and let f = g1 · · · gk. Then

ord(f) = lcm (ord(g1), . . . , ord(gk)) .

Proof. See Lidl and Niederreiter [22, Theorem 3.9].

Another interesting approach to the minimal polynomial of an ultimately periodic
sequence σ ∈ F

∞
q makes use of generating functions. Following Niederreiter [28], we

assign to an arbitrary sequence σ = (sn)∞n=0 of elements of Fq the generating function

Gσ(x) = s0x
−1 + s1x

−2 + s2x
−3 + · · · ,

regarded as an element of the field Fq((x
−1)) of formal Laurent series in the inde-

terminate x−1. The field Fq((x
−1)) contains the field Fq(x) of rational functions as

a subfield. A sequence σ ∈ F
∞
q is ultimately periodic if and only if the associated

generating function Gσ belongs to the subfield Fq(x).
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Theorem 11. Let m ∈ Fq[x] be a monic polynomial, and let σ = (sn)∞n=0 be a sequence
of elements of Fq. Then σ is ultimately periodic and m is the minimal polynomial of σ
if and only if

∞∑
n=0

snx−n−1 =
h(x)

m(x)

with a polynomial h ∈ Fq[x] with deg(h) < deg(m) and gcd(h, m) = 1.

Proof. See Niederreiter [28], [22, p. 218].

Theorem 12. For each j = 1, . . . , k, let σj be an ultimately periodic sequence in
F
∞
q with minimal polynomial mj ∈ Fq[x]. If the polynomials m1, . . . , mk are pairwise

relatively prime, then the minimal polynomial of the sum σ = σ1 + · · ·+ σk is equal to
the product m1 · · ·mk.

Conversely, let σ be an ultimately periodic sequence in F
∞
q whose minimal polyno-

mial m ∈ Fq[x] is the product of pairwise relatively prime monic polynomials m1, . . . , mk ∈
Fq[x]. Then, for each j = 1, . . . , k, there exists a uniquely determined ultimately peri-
odic sequence σj with minimal polynomial mj ∈ Fq[x] such that σ = σ1 + · · ·+ σk.

Proof. A proof of the first part of the theorem can be found on page 426 in [22]. To
prove the second part, let h/m ∈ Fq(x) be the generating function of σ in the sense of
Theorem 11. Let

h

m
=

h1

m1

+ · · ·+ hk

mk

(8)

be the partial fraction decomposition of h/m. By Theorem 11, deg(h) < deg(m)
and gcd(h, m) = 1. This implies deg(hj) < deg(mj) and gcd(hj , mj) = 1 for 1 ≤
j ≤ k. The rational functions hj/mj correspond to uniquely determined ultimately
periodic sequences σj ∈ F

∞
q with minimal polynomials mj according to Theorem 11.

Equation (8) implies that σ = σ1 + · · ·+ σk.

Let σ be an ultimately periodic sequence of F
∞
q , and let f be a nonzero polynomial

over Fq. We call the sequence τ = f(T )σ a linearly filtered sequence derived from σ.
The polynomial f is called the filter polynomial. Note that the sequence τ is a linear
combination of shifted versions of σ.

Theorem 13. Let σ be an ultimately periodic sequence of elements of Fq with minimal
polynomial mσ ∈ Fq[x], and let f be a nonzero polynomial over Fq. Then the sequence
τ = f(T )σ is again ultimately periodic and has minimal polynomial

mτ =
mσ

gcd(mσ, f)
.

Proof. See Niederreiter [27], or Blackburn [3], or Göttfert [14, Chap. 2].
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If σ ∈ F
∞
q is periodic and f ∈ Fq[x] is arbitrary, then τ = f(T )σ is also periodic.

This is trivial if f is the zero polynomial. Otherwise, recall that σ is periodic if and
only if mσ(0) �= 0. Since mτ , the minimal polynomial of τ , divides mσ, by Theorem 13,
we have mτ (0) �= 0, so that τ is periodic.

If σ = (sn)∞n=0 is a periodic sequence in F
∞
q with per(σ) = p, then the least positive

integer N such that the N -tuples sn = (sn, sn+1, . . . , sn+N−1), 0 ≤ n ≤ p − 1, are
distinct is called the span or the maximum order complexity of σ. Equivalently, the
periodic sequence σ ∈ F

∞
q has maximum order complexity N (or span N) if σ could

be generated by some feedback shift register over Fq of length N but by no shorter
feedback shift register.

An N -stage feedback shift register (FSR) over Fq is uniquely determined by its
feedback function F : F

N
q → Fq. The FSR is called nonsingular if the mapping

Φ : (yN−1, . . . , y1, y0) ∈ F
N
q 	→ (F (y0, y1, . . . , yN−1), yN−1, . . . , y2, y1) ∈ F

N
q

is a bijection. If the feedback function F of an N -stage FSR is linear, it is called a
linear feedback shift register (LFSR). Otherwise it is referred to as a nonlinear feedback
shift register (NLFSR).

Definition 1. Let F : F
N
q → Fq be the feedback function of an N-stage feedback shift

register. The FSR is called primitive if for any nonzero initial state vector of F
N
q the

corresponding standard output sequence of the FSR has period qN −1, and if F (0) = 0,
where 0 is the zero vector of F

N
q .

Note that a primitive feedback shift register over Fq is necessarily nonsingular.
If the feedback function F : F

N
q → Fq of an N -stage FSR is linear, that is, if

F (x0, x1, . . . , xN−1) = a0x0 + a1x1 + · · · + aN−1xN−1

with aj ∈ Fq for 0 ≤ j ≤ N − 1, then the N -degree polynomial c ∈ Fq[x] given by

c(x) = xN + F (1, x, x2, . . . , xN−1) = xN + aN−1x
N−1 + · · · + a1x + a0

is called the characteristic polynomial of the LFSR. It is well known (see e.g. Lidl and
Niederreiter [22, Chap. 8]) that an N -stage LFSR whose characteristic polynomial is a
primitive polynomial over Fq, will generate a periodic sequence of period qN −1 for any
nonzero initial state vector. Thus an LFSR with a primitive characteristic polynomial
is a primitive FSR in the sense of Definition 1.

Example 1. Consider the binary 5-stage NLFSR with feedback function

F (x0, x1, x2, x3, x4) = x0 + x1 + x3 + x1x3.

The feedback shift register is shown in Figure 5.
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The standard output sequence corresponding to the initial state vector s0 = (0, 0, 0, 0, 1)
for the given feedback shift register is

σ = (0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1)∞.

The sequence σ has period per(σ) = 31 and linear complexity L(σ) = 30. Note that
the sequence σ = (sn)∞n=0 can be defined by the nonlinear recursion

sn+5 = sn+3sn+1 + sn+3 + sn+1 + sn for all n ≥ 0, (9)

together with the initial values s0 = s1 = s2 = s3 = 0, and s4 = 1. One can say that the
above feedback shift register provides the hardware implementation of recursion (9).

There are ϕ(2N −1)/N primitive binary polynomials of degree N . Therefore, there
are ϕ(2N − 1)/N binary primitive N -stage LFSR’s. The total number of binary prim-
itive N -stage FSR’s, linear or nonlinear, is given by

BN = 22N−1−N .

This is the number of translation distinct (see Definition 2 below) binary deBruijn
sequences [5], and there is a one-to-one correspondence between binary deBruijn se-
quences and sequences produced by binary primitive FSR’s. The number of nonsingular
binary N -stage FSR’s is given by

CN = 22N−1

.

See Walker [36]. Comparing numbers BN and CN , we find BN/CN = 1/2N . Thus, on
the average one out of 2N nonsingular binary FSR’s is primitive.

Definition 2. Let σ and τ be periodic sequences in F
∞
q with per(σ) = per(τ) = p.

Then we call σ and τ cyclically equivalent if there is an integer j with 1 ≤ j ≤ p such
that τ = T jσ. If no such integer j exists, we call σ and τ cyclically inequivalent or
translation distinct.

σ

0
D

1
D

2
D

3
D

4
D

Figure 5: A primitive 5-stage NLFSR
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Theorem 14. Cyclically equivalent sequences of F
∞
q have the same minimal polyno-

mial.

Proof. Let σ and τ be two cyclically equivalent sequences in F
∞
q of period p ≥ 1. Then

there exists an integer j with 1 ≤ j ≤ p and τ = T jσ. By Theorem 13,

mτ (x) =
mσ(x)

gcd(mσ(x), xj)
.

Since σ is periodic, mσ(0) �= 0 so that mσ(x) and xj are relatively prime.

Any two standard output sequences of a primitive N -stage FSR over Fq correspond-
ing to nonzero initial state vectors are cyclically equivalent. They are both shifted ver-
sions of the same periodic sequence of period qN −1. Therefore, the following definition
makes sense.

Definition 3. Let F : F
N
q → Fq be the feedback function of a primitive N-stage FSR

over Fq. Then we define the minimal polynomial, the period, and the linear complex-
ity of the FSR to be the minimal polynomial, the period, and the linear complexity,
respectively, of any nonzero standard output sequence of the FSR.

Let σ = (sn)∞n=0 be any nonzero standard output sequence of a primitive N -stage
feedback shift register. Equivalently, let σ be a periodic sequence in F

∞
q of period

p = qN − 1 and of span N that does not contain N consecutive zero terms. We
investigate the distribution properties of the linearly filtered sequence τ = f(T )σ in
the case that the nonzero filter polynomial f ∈ Fq[x] has degree less than N . We
will show that up to a slight aberration for the zero element, the elements of Fq are
equidistributed in τ . Moreover, all possible strings of elements of Fq up to a certain
length which depends on the length N of the primitive FSR and the degree of the filter
polynomial, appear equally often within a full portion of the period of τ—again, up to
a slight aberration for the all-zero string.

If f(x) = xeg(x) with e ≥ 0 and g ∈ Fq[x] with g(0) �= 0, then the sequence f(T )σ
is a shifted version of the sequence g(T )σ. Therefore, w.l.o.g. we can restrict our
attention to filter polynomials f which are not divisible by x.

Theorem 15. Let σ = (sn)∞n=0 be any nonzero output sequence of an N-stage primitive
FSR over Fq. Let f ∈ Fq[x] with f(0) �= 0 and 0 ≤ deg(f) = k ≤ N − 1. Let
τ = (tn)∞n=0 = f(T )σ. For 1 ≤ m ≤ N − k and b = (b1, . . . , bm) ∈ F

m
q let Z(b) be the

number of n ∈ {0, 1, . . . , r − 1} for which (tn, tn+1, . . . , tn+m−1) = b. Then

Z(b) =

{
qN−m − 1 for b = 0,

qN−m for b �= 0.

Proof. By assumption, f(x) = a0 + a1x + · · ·+ akx
k with a0ak �= 0. Thus

tn = a0sn + a1sn+1 + · · ·+ aksn+k for n = 0, 1, . . . .
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Let b = (b1, . . . , bm) ∈ F
m
q be fix. Consider the system of m linear equations in N

unknowns x0, x1, . . . , xN−1, given by

k∑
j=0

ajxj+h = bh+1, h = 0, 1, . . . , m − 1. (10)

Let A be the matrix of coefficients of the corresponding homogeneous system of linear
equations, so that

A =




a0 a1 . . . ak 0 0 0 . . . 0
0 a0 a1 . . . ak 0 0 . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . a0 a1 . . . ak . . . 0


 .

Then A is an m×N matrix over Fq of rank m, since a0 �= 0. If b �= 0 then the augmented
matrix A′ = (A,bt), which is the m × (N + 1) matrix whose first N columns are the
columns of the matrix A and whose last column is the transpose of b, has also rank
m. Hence the system of linear equations in (10) has qN−m distinct solution vectors
(x0, . . . , xN−1) ∈ F

N
q .

If b = 0, then the zero vector of F
N
q is one of the qN−m solution vectors of the

system (10). As n runs through 0, 1, . . . , r − 1, all nonzero N -tuples occur among
s0, s1, . . . , sr−1 ∈ F

N
q , so that Z(0) = qN−m−1. If b �= 0, then all qN−m solution vectors

of (10) are nonzero and thus occur among s0, s1, . . . , sr−1, so that Z(b) = qN−m.

Example 2. Consider the 5-stage NLFSR of Example 1. If we apply to the stages
of the shift register a linear feedforward function, then the shift register will produce
a new output sequence τ = (tn)∞n=0. In contrast to the standard output sequence
σ = (sn)∞n=0 which is obtained by emitting the content of cell D0 at any clock pulse,
the terms of sequence τ are obtained by outputting the contents of several cells and
adding together the outputs. As an illustration, see Figure 6.

We have
tn = sn + sn+1 + sn+3 for all n ≥ 0. (11)

Using the shift operator T , equation (11) can be written as

τ = σ + Tσ + T 3σ = (1 + T + T 3)σ = f(T )σ,

and the filter polynomial is given by f(x) = x3 + x + 1.

While the application of the linear operator f(T ) to any nonzero standard output
sequence σ of a primitive N -stage FSR over Fq preserves the distribution properties of
σ largely, provided that deg(f) is small compared to N , the linearly filtered sequence
τ = f(T )σ has in general a maximum order complexity twice as high as σ. For more
information on linear filtering see [12].
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We recall some results from Selmer [33, Chap. 4], and Zierler and Mills [37]. Let
f, g, . . . , h ∈ Fq[x] be nonconstant polynomials without multiple roots in their respec-
tive splitting fields over Fq and with nonzero constant terms. Then f ∨ g ∨ · · · ∨ h
is defined to be the monic polynomial whose roots are the distinct products αβ · · · γ,
where α is a root of f , β a root of g, and γ a root of h. The polynomial f ∨g∨· · ·∨h is
again a polynomial over the ground field Fq. This follows from the fact that all conju-
gates (over Fq) of a root of f ∨g∨· · ·∨h are roots of f ∨g∨· · ·∨h. The importance of
the polynomial f ∨ g∨ · · ·∨h stems from the fact that if σ = (sn)∞n=0, τ = (tn)∞n=0, . . . ,
υ = (un)∞n=0 are periodic sequences of elements of Fq with characteristic polynomials
f, g, . . . , h, respectively, then f ∨g∨· · ·∨h is a characteristic polynomial of the product
sequence στ · · ·υ = (sntn · · ·un)∞n=0.

Theorem 16. Let f, g, . . . , h ∈ Fq[x] be polynomials over Fq without multiple roots
and with nonzero constant terms. The polynomial f ∨ g ∨ · · · ∨ h ∈ Fq[x] is irreducible
if and only if the polynomials f, g, . . . , h are all irreducible and of pairwise relatively
prime degrees. In this case

deg(f ∨ g ∨ · · · ∨ h) = deg(f) deg(g) · · ·deg(h). (12)

If σ, τ, . . . , υ are periodic sequences in Fq with irreducible minimal polynomials f , g,
. . . , h ∈ Fq[x] of pairwise relatively prime degrees and with f(0)g(0) · · ·h(0) �= 0, then
f ∨ g ∨ · · · ∨ h is the minimal polynomial of the product sequence στ · · ·υ.

Proof. See Selmer [33, Chap. 4].

Example 3. Consider the binary irreducible polynomials f(x) = x2 + x + 1 and
g(x) = x3 + x + 1. Over the splitting field F64 of fg ∈ F2[x] we can write

f(x) = x2 + x + 1 = (x − α)(x − α2) = x2 + (α + α2)x + α3,

g(x) = x3 + x + 1 = (x − β)(x − β2)(x − β4).

τ

0
D

1
D

2
D

3
D

4
D

Figure 6: The 5-stage NLFSR with linear feedforward output function

24



In particular, for the root α ∈ F4 of f we have

α + α2 = 1 and α3 = 1.

Using these identities, we obtain

(f ∨ g)(x) = (x − αβ)(x − αβ2)(x − αβ4)(x − α2β)(x − α2β2)(x − α2β4)

=
1

α3

(x

α
− β

)(x

α
− β2

)(x

α
− β4

) 1

α6

( x

α2
− β

)( x

α2
− β2

) ( x

α2
− β4

)
= g

(x

α

)
g

( x

α2

)
=

(
x3 + α2x + 1

) (
x3 + αx + 1

)
= x6 + x4 + x2 + x + 1.

Let σ = (sn)∞n=0 be the periodic binary sequence defined by the linear recursion sn+2 =
sn+1+sn for all n ≥ 0 and the initial values s0 = 0 and s1 = 1. Similarly, let τ = (tn)∞n=0

be the periodic binary sequence defined by tn+3 = tn+1 + tn for all n ≥ 0 and t0 = 1
and t1 = t2 = 0. Then σ has minimal polynomial f and period ord(f) = 3 whereas the
sequence τ has minimal polynomial g and period ord(g) = 7.

σ = 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 . . .

τ = 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 . . .

στ = 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 . . .

One readily checks that the product sequence στ = (wn)∞n=0 satisfies the 6th-order
linear recursion

wn+6 = wn+4 + wn+2 + wn+1 + wn for all n ≥ 0.

Note that the first five terms of (wn)∞n=0 are zero, so that the sequence στ cannot satisfy
any shorter linear recursion. Thus (f ∨ g)(x) = x6 + x4 + x2 + x + 1 is the minimal
polynomial of στ .

The following Lemma will be needed in the sequel. We skip its rather simple proof
here.

Lemma 1. Let a and b be positive integers. Then

gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1. (13)

In particular, 2a − 1 and 2b − 1 are relatively prime if and only if a and b are.

From now on we restrict ourselves to the binary case q = 2.

Theorem 17. Let f, g, . . . , h ∈ F2[x] be irreducible binary polynomials without multiple
roots, of pairwise relatively prime degrees, and with nonzero constant terms. Then

ord(f ∨ g ∨ · · · ∨ h) = ord(f) ord(g) · · ·ord(h). (14)
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Proof. It suffices to prove the assertion for two polynomials f, g ∈ F2[x]. Let deg(f) =
a, and let α ∈ F2a be a root of f . Since f is irreducible, ord(f) coincides with the order
of α as an element of the group F

∗
2a , the multiplicative group formed by all nonzero

elements of F2a . The order of any element of F
∗
2a divides the order of the group F

∗
2a which

is 2a − 1. Let deg(g) = b, and let β ∈ F2b be a root of g. Then, by the same argument,
we conclude that the order of β in F

∗
2b is equal to ord(g) and both numbers divide

2b − 1. By hypothesis, the greatest common divisor gcd(a, b) of a and b is 1, so that,
by Lemma 1, gcd(2a − 1, 2b − 1) = 1. It follows that α and β are elements of relatively
prime orders in the group F

∗
2ab. By Theorem 16, the polynomial f∨g is irreducible over

F2. Thus the order of the polynomial f ∨g is equal to the order of γ = αβ in F
∗
2ab . It is

well known (see e.g. McEliece [23, p. 38]) that the order of the product of two elements
in a commutative group is the product of the orders of the two elements if these orders
are relatively prime. Hence ord(f ∨g) = ord(αβ) = ord(α) ord(β) = ord(f) ord(g).

For the binary polynomials f(x) = x2 + x + 1, g(x) = x3 + x + 1, and h(x) =
(f ∨ g)(x) = x6 + x4 + x2 + x + 1 appearing in Example 1, we find ord(f) = 3,
ord(g) = 7, and ord(h) = 21. Thus 21 = ord(f ∨ g) = ord(f) ord(g) = 3 · 7, in
agreement with equation (14). The imposed restriction in Theorem 17 to the binary
field F2 is necessary. Consider, for instance, the two polynomials f(x) = x + 1 = F3[x]
and g(x) = x2 + 1 ∈ F3[x] over the finite field of order 3. Then ord(f) = 2, ord(g) = 4,
and f ∨ g = g, and equation (14) does not hold in this case.

Theorem 18. Let N be a positive integer, and let σ = (sn)∞n=0 be a binary periodic
sequence with period p = 2N −1. The canonical factorization of the minimal polynomial
mσ ∈ F2[x] of σ over F2 consists of distinct irreducible polynomials whose degrees all
divide N . In particular, mσ contains no repeated factors.

Proof. Since σ has period p, the polynomial c(x) = xp − 1 ∈ F2[x] is a characteristic
polynomial of σ. By Theorem 8, mσ(x) divides c(x). Consequently, mσ(x) divides
x2N − x, which is the product of all irreducible binary polynomials whose degrees
divide N (see [22, Theorem 3.20]).

Theorem 19. Let N be a positive integer, and let σ = (sn)∞n=0 be a binary periodic
sequence with period P = 2N −1. Let f ∈ F2[x] be a nonzero polynomial with deg(f) <
N . If the canonical factorization of the minimal polynomial of σ over F2 contains at
least one primitive binary polynomial of degree N , then the linearly filtered sequence
τ = f(T )σ has period per(τ) = 2N − 1.

Proof. Let mσ = g1 · · · gk be the canonical factorization of the minimal polynomial of σ
in F2[x]. Let g1 be a primitive binary polynomial of degree N . Then, ord(g1) = 2N − 1
and ord(gj) divides 2N − 1 for 1 ≤ j ≤ N . An application of Theorem 13 yields that
mτ = mσ/ gcd(mσ, f) is divisible by the primitive polynomial g1. Let—after a possible
rearrangement of factors—the canonical factorization of the minimal polynomial of τ
be given by mτ = g1 · · · gh, where h ≤ k. By Theorems 9 and 10,

per(τ) = ord(mτ ) = lcm (ord(g1), . . . , ord(gk)) = 2N − 1.
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Theorem 20. Let N ≥ 1, and let σ = (sn)∞n=0 be a binary periodic sequence of period
p = 2N −1 and of span N . If the zero vector 0 ∈ F

N
2 does not occur among the N-tuples

sn = (sn, sn+1, . . . , sn+N−1), 0 ≤ n ≤ p − 1, then x − 1 does not divide the minimal
polynomial mσ of σ.

Proof. The N -tuples sn, 0 ≤ n ≤ p − 1, run through all nonzero vectors of F
N
2 .

Therefore, the element 1 occurs exactly 2N−1 times among the first coordinates of
these N -tuples. Thus

s0 + s1 + · · · + sp−1 = 0.

Since σ is periodic with period p, we get

sn + sn+1 + . . . + sn+p−1 = 0 for all n ≥ 0,

which means that
c(x) = xp−1 + xp−2 + · · ·+ x + 1 ∈ F2[x]

is a characteristic polynomial of σ. Since c(1) �= 0, the polynomial c(x) is not divisible
by x − 1, nor is the minimal polynomial mσ(x) which is a divisor of c(x).

Theorem 21. Let S, T, . . . , U be pairwise relatively prime integers greater than 1. Let
σ = (sn)∞n=0, τ = (tn)∞n=0, . . . , υ = (un)∞n=0 be binary periodic sequences of periods
per(σ) = 2S − 1, per(τ) = 2T − 1, . . . , per(υ) = 2U − 1, respectively. Assume that the
canonical factorizations over F2 of the minimal polynomials of σ, τ, . . . , υ are

mσ =
s∏

i=1

fi, mτ =
t∏

j=1

gj, . . . , mυ =
u∏

k=1

hk. (15)

Then the minimal polynomial of the product sequence στ · · ·υ = (sntn · · ·un)∞n=0 is
given by

mστ ···υ =
s∏

i=1

t∏
j=1

· · ·
u∏

k=1

(fi ∨ gj ∨ · · · ∨ hk). (16)

In fact, (16) represents the canonical factorization of the minimal polynomial of στ · · ·υ
over F2.

Proof. It suffices to carry out the details of the proof for the product of two such
sequences σ and τ . The general statement then follows by induction. Consider the
canonical factorization of the minimal polynomials mσ and mτ in (15). By Theorem 18,
the irreducible polynomials f1, . . . , fs ∈ F2[x] are distinct and deg(fi) divides S for
1 ≤ i ≤ s. Similarly, the irreducible polynomials g1, . . . , gt are distinct and deg(gj)
divides T for 1 ≤ j ≤ t. Since the sequences σ and τ are periodic, their minimal
polynomials mσ and mτ are not divisible by x. Thus, the first-degree irreducible
polynomial p(x) = x does not occur among the polynomials f1, . . . , fs and g1, . . . , gt.
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By Theorem 12, the sequences σ and τ possess unique representations

σ =
s∑

i=1

σi and τ =
t∑

j=1

τj ,

where σi is a binary periodic sequence with minimal polynomial fi for 1 ≤ i ≤ s, and
τj is a binary periodic sequence with minimal polynomial gj for 1 ≤ j ≤ t. It follows
that

στ =

s∑
i=1

t∑
j=1

σiτj .

By hypothesis, gcd(S, T ) = 1. It follows that for each i ∈ {1, . . . , s} and j ∈ {1, . . . , t},
the corresponding irreducible polynomials fi and gj have relatively prime degrees. In-
voking Theorem 16, we conclude that for each i ∈ {1, . . . , s} and j ∈ {1, . . . , t}, the
sequence σiτj has the irreducible minimal polynomial fi ∨ gj ∈ F2[x].

As will be shown below, the irreducible polynomials fi ∨ gj, 1 ≤ i ≤ s, 1 ≤ j ≤ t,
are distinct. Another application of Theorem 12 therefore shows that the minimal
polynomial of στ has the form

mστ =
s∏

i=1

t∏
j=1

(fi ∨ gj). (17)

It remains to show that the polynomials fi ∨ gj, 1 ≤ i ≤ s, 1 ≤ j ≤ t, are distinct.
To see this, let fi and f ′

i be any two factors from the canonical factorization of mσ, and
let gj and g′

j be any two factors from the canonical factorization of mτ . Assume to the
contrary that the two irreducible polynomials fi ∨ gj and f ′

i ∨ g′
j are equal. Note that

two irreducible polynomials over the finite field Fq are equal if and only if they have a
common root (in some extension field of Fq). Let γ be a common root of fi ∨ gj and
f ′

i ∨ g′
j . Then we can write γ in the form

γ = αβ = α′β ′, (18)

where α, β, α′, and β ′ are roots of the polynomials fi, gj , f ′
i , and g′

j , respectively. Since
α is a root of the irreducible polynomial fi, we have α ∈ F2deg(fi), which is a subfield
of F2S , as deg(fi) divides S. Similarly, we conclude that α′ ∈ F2S and β, β ′ ∈ F2T .
From (18) we obtain

α

α′ =
β ′

β
. (19)

Clearly, α/α′ ∈ F2S and β ′/β ∈ F2T . Since S and T are relatively prime, we have
F2S ∩ F2T = F2, so that both sides of (19) must be equal to 1. Hence α = α′ and
β = β ′. This, however, implies fi = f ′

i and gj = g′
j.
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Corollary 2. Let σ = (sn)∞n=0, τ = (tn)∞n=0, . . . , υ = (un)∞n=0 be binary periodic
sequences of periods per(σ) = 2S −1, per(τ) = 2T −1, . . . , per(υ) = 2U −1, and linear
complexities L(σ), L(τ), . . . , L(υ) respectively. If the integers S, T, . . . , U be pairwise
relatively prime and greater than 1, then the product sequence στ · · ·υ = (sntn · · ·un)∞n=0

has linear complexity
L(στ · · ·υ) = L(σ)L(τ) · · ·L(υ), (20)

and period
per(στ · · ·υ) =

(
2S − 1

) (
2T − 1

) · · · (2U − 1
)
. (21)

Proof. Let the minimal polynomials of σ, τ, . . . , υ be given by the expressions in (15).
Then, by Theorem 21 and equation (12), we obtain

L(στ · · ·υ) = deg(mστ ···υ) =
s∑

i=1

t∑
j=1

· · ·
u∑

k=1

deg(fi ∨ gj ∨ · · · ∨ hk)

=

s∑
i=1

t∑
j=1

· · ·
u∑

k=1

deg(fi) deg(gj) · · ·deg(hk))

=

( s∑
i=1

deg(fi)

)( t∑
j=1

deg(gj)

)
· · ·

( u∑
k=1

deg(hk)

)

= L(σ)L(τ) · · ·L(υ).

This proves equation (20). For the proof of (21), recall that over an arbitrary finite
field Fq, the period of a periodic sequence of field elements is equal to the order of the
sequence’s minimal polynomial (Theorem 9). Using Theorems 21, 10, and 17, we get

per(στ · · ·υ) = ord(mστ ···υ)

= lcm{ord(fi ∨ gj ∨ · · · ∨ hk) : 1 ≤ i ≤ s, 1 ≤ j ≤ t, . . . , 1 ≤ k ≤ u}
= lcm{ord(fi) ord(gj) · · ·ord(hk) : 1 ≤ i ≤ s, 1 ≤ j ≤ t, . . . , 1 ≤ k ≤ u}
= lcm{ord(fi) : 1 ≤ i ≤ s} lcm{ord(gj) : 1 ≤ j ≤ t} · · · lcm{ord(hk) : 1 ≤ k ≤ u}
= ord(mσ) ord(mτ ) · · · ord(mυ)

= per(σ) per(τ) · · ·per(υ)

=
(
2S − 1

) (
2T − 1

) · · · (2U − 1
)
.

To justify the fourth equality in the above argument we note that ord(fi) divides 2S−1,
ord(gj) divides 2T − 1, and ord(hk) divides 2U − 1 for all 1 ≤ i ≤ s, 1 ≤ j ≤ t, and
1 ≤ k ≤ u, and that the numbers 2S − 1, 2T − 1, . . . , 2U − 1 are pairwise relatively
prime according to Lemma 1.

Example 4. Consider the 4-stage NLFSR with feedback function

F (x0, x1, x2, x3) = x0 + x1 + x2 + x1x2,
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and the 5-stage NLFSR defined by the feedback function

G(x0, x1, x2, x3, x4) = x0 + x1 + x3 + x1x3.

Using any nonzero initial state vector of F
4
2, the first feedback shift register will produce

a periodic binary sequence σ of period per(σ) = 15 and linear complexity L(σ) = 14.
For instance, if we use the initial state vector (0, 0, 0, 1), we get

σ = (0 0 0 1 0 1 1 0 1 0 0 1 1 1 1)∞

The minimal polynomial of σ is

mσ(x) = x14 + x13 + · · ·+ x + 1 = f1(x)f2(x)f3(x)f4(x),

where f1(x) = x2+x+1, f2(x) = x4+x3+x2+x+1, f3(x) = x4+x+1, f4 = x4+x3+1.
Similarly, if we initialize the second shift register with the nonzero vector (0, 0, 0, 0, 1),
it generates the periodic sequence

τ = (0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1)∞

of period per(τ) = 31 and linear complexity L(τ) = 30. The corresponding minimal
polynomial is

mτ (x) = x30 + x29 + · · · + x + 1 = g1(x)g2(x)g3(x)g4(x)g5(x)g6(x),

where g1, . . . , g6 are the six irreducible (and primitive) polynomials in F2[x] of degree
5. The product sequence στ has period per(στ) = 15 · 31 = 465 and linear complexity
L(στ) = 14 · 30 = 420. The canonical factorization of the minimal polynomial of στ
consists of 4 · 6 = 24 irreducible binary polynomials. Of these polynomials six have
degree 10 and order 93, six have degree 20 and order 155, and twelve have degree 20
and order 465.

The irreducible factors:

g1 g2 g3 g4 g5 g6

f1 f1 ∨ g1 f1 ∨ g2 f1 ∨ g3 f1 ∨ g4 f1 ∨ g5 f1 ∨ g6

f2 f2 ∨ g1 f2 ∨ g2 f2 ∨ g3 f2 ∨ g4 f2 ∨ g5 f2 ∨ g6

f3 f3 ∨ g1 f3 ∨ g2 f3 ∨ g3 f3 ∨ g4 f3 ∨ g5 f3 ∨ g6

f4 f4 ∨ g1 f4 ∨ g2 f4 ∨ g3 f4 ∨ g4 f4 ∨ g5 f4 ∨ g6

The degrees of the irreducible factors:
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5 5 5 5 5 5

2 10 10 10 10 10 10

4 20 20 20 20 20 20

4 20 20 20 20 20 20

4 20 20 20 20 20 20

The orders of the irreducible factors:

31 31 31 31 31 31

3 93 93 93 93 93 93

5 155 155 155 155 155 155

15 465 465 465 465 465 465

15 465 465 465 465 465 465

Note that there are exactly ϕ(93)/10 = 6 irreducible binary polynomials of degree
10 and order 93, ϕ(155)/20 = 6 irreducible binary polynomials of degree 20 and order
155, and ϕ(465)/20 = 12 irreducible binary polynomials of degree 20 and order 465
(compare [22, Theorem 3.5]). All these polynomials appear in the canonical factoriza-
tion of mστ . This is a consequence of the fact that the sequences σ and τ have maximum
linear complexities L(σ) = 24 − 2 = 14 and L(τ) = 25 − 2 = 30, respectively.
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Appendix B

B Hardware considerations and an overview on fig-

ures of merits for hardware implementations

In this section we will compare several implementation variants of the proposed Achter-
bahn stream cipher with other stream ciphers from different fields of applications.
A5/1, E0 and RC4 are well known stream ciphers, because they are used in standards.
A5/1 is specified for GSM applications, E0 is used in Bluetooth wireless communi-
cation, and RC4 in the IEEE 802.11b WLAN standard. We also consider the AES
(Rijndael) block cipher standard which can be operated in the output feedback mode
(OFB) as a keystream generator. The comparison is based on several figures of merit,
which are defined and briefly discussed in the following sections.

When evaluating the implementation properties of a certain algorithm in hardware
it is important to define the figures of merit precisely. In general the ultimate figure will
be a performance/cost ratio. The cost function cannot be described easily, because it
depends on several factors which must be weighted differently in different applications.
The most important common factors, however, are the size of the implementation, the
power consumption, the throughput, the implementation efficiency, and the capability
of the algorithm to trade off one factor against another one. The latter property is
often termed scalability.

B.1 Area and power

The size of the implementation of an algorithm depends strongly on the minimum
feature size of the technology, which is the dimension of the smallest feature actually
constructed in the manufacturing process. It also depends on the specific circuit design
style, such as CMOS or DCVSL [30], and the number of available metal layers for wire
routing. Hence, it is necessary to resort to an approximate, technology and circuit
style independent measure. A commonly used measure for the size of a design is the
number of NAND gate equivalents (GE). This is the area of the circuit implementation
divided by the area of the smallest NAND gate in the used standard CMOS cell library.
Tab. 1 shows the sizes of some gates in units of GE for a contemporary standard cell
library. All CMOS standard cell libraries contain gates with more than two inputs,
which generally reduces area, power consumption, and gate propagation delay of a
circuit. Examples are AND and OR gates with three or four inputs or XOR gates with
three inputs. Obviously, a 4-input NAND gate is smaller than the equivalent circuit
built from three 2-input AND gates. Thus the gate equivalent count of a design will
always reflect the optimized mixture of available multi-input cells, but not the count
of binary operations in the algorithm.

The power consumption of a CMOS design is also related to the gate equivalent
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gate size [GE] gate size [GE]
2-input NAND 1 2-bit MUX 2.50
2-input AND 1.25 2-input XOR 2.25
3-input AND 1.50 3-input XOR 4.00
4-input AND 1.75 register bit 6.00

Table 1: Typical sizes of some gates in units of NAND gate equivalents (GE).

count. However, the dynamic power consumption of the implementations of two dif-
ferent algorithms, which have approximately the same gate count, can differ strongly.
Power consumption estimations for an algorithm require a detailed analysis of the
dynamic switching activity of the gates.

B.2 Throughput

The throughput of a stream cipher is conveniently defined as the average number of
output ciphertext bits per second, which is in a synchronous design equivalent to the
average number 〈N 〉 of output bits per clock cycles times the clock frequency f ,

P = 〈N 〉f. (22)

Hence, the throughput can be enhanced either by increasing the clock frequency, or
by increasing the average number of output bits per clock cycle. The maximum clock
frequency a circuit can be operated at is determined by several factors, such as the
feature size of the available technology and the operating voltage. Here we can hope,
that for the next years Moore’s Law will contribute to speed up existing algorithms.
However, there is an important factor which is under full control of the algorithm
designer. The number of gate propagation delays in the longest combinational path
of the design, the so-called critical path, will ultimately limit the maximally reachable
clock frequency. The gate propagation delay is the time required for switching the
output of a gate after an input signal has changed. Generally, the sum of the gate
propagation delays of the gates in the critical path must be smaller than the cycle time
(1/f). Hence, an algorithm allowing for an implementation with a smaller number
of gate propagation delays in the critical path can be operated at higher frequencies.
Various pipelining techniques can be used to cut down the critical path by some amount.
However, this usually leads to a rapidly increasing number of gates in the design. A
more complex algorithm will lead to a steeper rise of the size of the design. For the
application of a stream cipher in a hardware design it is important that the cipher itself
does not contain the critical path of the design. Hence the number of gate propagation
delays in the critical path of the cipher (without already implementing pipelining) is
an important technology independent figure of merit which determines the maximally
reachable throughput.
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Another significant factor determining the effective throughput in practice is the
overhead time for setting up the encryption in the communication protocol. In the ma-
jority of applications the communication is packet-oriented: the message text is split
into small packets, which are separately encrypted and transmitted. Typical packet
lengths are, e.g., 224 bits in GSM applications, 512 bits for most of the TCP/IP packets
in the internet, or up to 2745 bits in the Bluetooth wireless communication standard.
To achieve a resynchronization after a transmission error the packets are marked with
a frame number and other public information (like time stamps). To prevent the reuse
of key material this block of public information, called the initialization value vector, is
combined with the secret key. The period of time, starting with the processing of the
initialization vector, until the first output of cipher text, is called the resynchronization
time. Hence, the throughput is reduced by a factor which depends on the resynchro-
nization time and the size of the packets. Consequently, an important figure of merit
is a small resynchronization time.

B.3 Implementation efficiency

It is well known that different algorithms can be more or less well suited for a hardware
implementation. In order to express, how efficiently a stream cipher design uses the
gates to achieve a certain throughput, we introduce the implementation efficiency E of
a stream cipher. Normalizing the average number N of generated key stream bits per
cycle by the number of gate equivalents G of the implementation, we define

E =
N
G

[
bit

cyc · kGE

]
.

For convenience the number of gate equivalents is given in units of 1000 GE = 1 kGE.
This figure reflects how many kGE are necessary to generate one bit of keystream per
cycle on average.

B.4 Scalability

To cover a broad range of possible applications a stream cipher algorithm should be
suitable for a very small implementation with small throughput requirements, as well
as for high throughput applications, where a larger area and power consumption can
be tolerated. Examples for the first kind are mobile and smartcard applications. Fu-
ture pervasive computing applications, such as RFID tags or sensor networks, will
pose even more restrictive area and power constraints on the implementation of cryp-
tographic primitives. Hence, the minimal implementation size of an algorithm is cer-
tainly an important figure of merit. Examples for applications with an intermediate
bandwidth are video signals with serial bit rates between 143.18 Mbps (NTSC stan-
dard) and 1.458 Gbps (high definition video standard SMPTE 292M). On the high-end
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scale there are Gigabit ATM networks and I/O interconnections for distributed com-
puting with bandwidths between 1 Gbps and 30 Gbps (e.g. InfiniBand). In these fields
of applications the maximum throughput is the important figure of merit.

B.5 Discussion

We implemented the Achterbahn stream cipher in VHDL and synthesized the design
for a 0.13µ CMOS standard cell library. The design is configurable for bit-serial, 2-
bit, 4-bit, or 8-bit parallelization. Additionally to the full-fledged KSG, which is the
suggested KSG in our stream cipher proposal, we will also consider the reduced version
of the KSG described in Section 5. Naturally, in the design of the stream cipher we
strived for for minimum area without introducing pipelining in order to increase the
maximum frequency. In the first four columns of Tab. 7 the figures of merit for the
eight different implementation versions of Achterbahn are reported. The figures in
parenthesis refer to the the reduced version of the KSG.

The bit-serial implementation of the Achterbahn stream cipher has a comparably
small minimal implementation size1. The size of the design is approximately 3000
gate equivalents (GE), and the resynchronization time is given by 112 cycles plus the
length l of the initialization vector. This implementation is suitable for securing the
communication in pervasive computing applications, like RFID tags, for contactless or
contact-based smartcard applications, or for wireless communications with moderate
throughput requirements. It is also appropriate for securing serial data links in multi-
chip solutions, for masking on-chip signals in security devices, or as a pseudorandom
generator. The small number of gate propagation delays in the critical path allows
very high target frequencies. In a 0.13µm CMOS technology a frequency of more than
1 GHz can be achieved.

As described in previous sections, the Achterbahn stream cipher consists of rather
simple components: feedback shift registers, linear feedforward output functions, and
a tiny (from a hardware point of view) Boolean combining function. In Section 6, we
have seen due to the simplicity of the components and due to possible fast (parallel)
implementations of the underlying nonlinear feedback shift registers, the throughput
can be scaled in a straightforward manner. Paradoxically, the bit sequential nature
of a feedback shift register neither prohibits an efficient parallelization nor a pipelined
implementation. The implementation with 2-fold parallelization, that is with step size
k = 2, is only 15% larger, whereas the throughput is increased by a factor of 2, and
the resynchronization time is also reduced by a factor of 2. The implementation with
8-fold parallelization, corresponding to the step size k = 8, is 2.5 times larger while
the resynchronization time is 8 times smaller (i.e. 22 clock cycles for an initializa-
tion vector of maximum length l = 64). It is important to note that the number
of gate delays in the critical path is not increased by the parallelization. Hence the
8-bit parallel design can be operated with the same maximum frequency as the bit

1The smaller A5/1 cannot be considered as secure enough for most applications
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serial design—consequently the maximum throughput is 8 times greater. In a 0.13µm
CMOS technology, a throughput of more than 8 Gbps can be achieved. If even higher
thoughputs are required one or two pipeline stages in the feedback functions of the
NLFSR’s, the linear feedforward functions, and the Boolean combining function can
be introduced. The resulting reduction of the number of gate delays in the critical
path will increase the maximum throughput to values between 15 Gbps and 30 Gbps.
It is also possible to push the degree of parallelization (the step size) beyond k = 8,
say up to k = 16 to further increase the throughput. So far, we have not explored the
implication for the size of the design. Furthermore, the step size k is not limited to
an even number. All small integer values are possible allowing for a fine-tuning of the
throughput.

We implemented Achterbahn on also an FPGA (of type Stratix-I). In the full-fledged
8-bit parallel version the design was operated at a frequency of 240 MHz.

We now compare Achterbahn with three implementations of the AES with 128 bit
key length, for which figures are publicly available. We assume that the AES is oper-
ated in the OFB mode. Hence, it has a state of 128 bit which is updated by repeated
encryption operations, starting with a 128 bit initial value IV . The resynchronization
time for this configuration is then given by the time required for one encryption op-
eration. For the area comparison with the genuine stream ciphers we have to add to
the reported areas the gates necessary to implement the state. According to Tab. 1
the implementation of the state corresponds to 768 GE. The considered AES imple-
mentations are not protected against side channel attacks, such as differential power
analysis (DPA). The well known masking approaches [1, 4] for the nonlinear operations
of the S-Boxes lead to additional hardware costs of roughly 200 GE for each S-box [35].
Furthermore, the masking leads to a significant increase of the propagation delay of
the critical path. In reference [35] fifteen additional gate delay times for a specific
implementation are reported. To have a basis for the comparison with the Achterbahn
stream cipher, which already has a resynchronization mechanism, which is presumably
robust against side-channel attacks, the figures for the AES implementations are cor-
rected by the corresponding overhead areas and delay time penalties. In the footnotes
of Tab. 1 the original figures are reported. Masking of the AES is also necessary during
the keystream generation, because the key is inserted in each encryption of the state.
It is believed that stream ciphers are in general robust against DPA during keystream
generation. The other three reference stream cipher implementations, E0, A5/1, and
RC4, do not contain specific DPA counter measures. Although the key sizes and the
sizes of the initial values, are different for the considered stream ciphers, the compari-
son gives an indication about strengths and scalability of the different designs. Some
designs (E0, A5/1, RC4) have already been attacked successfully.

The proposed Achterbahn stream cipher has a comparably high implementation
efficiency. The efficiency grows with the degree of parallelization up to the step size
k = 8. The efficiency of the 8-bit parallel version is approximately two times greater
than the efficiency of the high speed AES implementation. At a frequency of approx-
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imately 190 MHz the 8-bit parallel Achterbahn implementation reaches the maximum
throughput of 1.5 Gbps of the high speed AES implementation. However, the frequency
of the Achterbahn design can still be increased by more than a factor of 5. The intro-
duction of pipeline stages and parallelization beyond the step size k = 8 are options to
further increase the throughput.
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Appendix C

C The feedback functions

In this Appendix, the feedback functions of the eight primitive binary nonlinear feed-
back shift registers are given which constitute the core of the keystream generator. See
Definition 1 in Appendix A for the definition of a primitive feedback shift register.
Note that in each feedback function the last seven variables appear only linearly. This
is a decisive advantage for high-speed implementations of the shift registers.

A(x0, x1, . . . , x21) = x0 + x5 + x6 + x7 + x10 + x11 + x12 + x13 + x17 + x20

+ x2x7 + x4x14 + x8x9 + x10x11 + x1x4x11 + x1x4x13x14;

B(x0, x1, . . . , x22) = x0 + x6 + x7 + x9 + x11 + x12 + x14 + x15 + x17 + x19 + x21

+ x1x4 + x2x7 + x5x9 + x6x10 + x2x4x8 + x1x3x5x10

+ x4x11x12x13;

C(x0, x1, . . . , x24) = x0 + x1 + x3 + x5 + x6 + x7 + x9 + x12 + x14 + x15 + x17

+ x18 + x22 + x1x6 + x4x13 + x8x16 + x12x15 + x5x11x14

+ x1x4x11x15 + x2x5x8x10;

D(x0, x1, . . . , x25) = x0 + x1 + x4 + x5 + x7 + x8 + x9 + x13 + x14 + x16 + x20

+ x24 + x1x6 + x4x7 + x12x16 + x15x17 + x4x15x17 + x7x9x10

+ x1x3x14x16 + x8x11x12x17;

E(x0, x1, . . . , x26) = x0 + x1 + x2 + x6 + x8 + x9 + x10 + x13 + x14 + x16 + x19

+ x21 + x23 + x1x8 + x3x12 + x11x17 + x15x18 + x5x6x15

+ x3x5x16x17 + x7x12x14x15;

F (x0, x1, . . . , x27) = x0 + x1 + x2 + x7 + x15 + x17 + x19 + x20 + x22 + x27

+ x9x17 + x10x18 + x11x14 + x12x13 + x5x14x19 + x6x10x12

+ x6x9x17x18 + x10x12x19x20;

G(x0, x1, . . . , x28) = x0 + x2 + x3 + x5 + x6 + x9 + x14 + x15 + x16 + x18

+ x21 + x27 + x5x7 + x6x20 + x10x14 + x13x18 + x8x19x21

+ x11x16x18 + x1x5x15x21 + x2x7x17x20;

H(x0, x1, . . . , x30) = x0 + x3 + x5 + x7 + x10 + x16 + x17 + x18 + x19 + x20

+ x21 + x24 + x30 + x5x15 + x11x18 + x16x22 + x17x21

+ x1x2x19 + x1x12x14x17 + x2x5x13x20.
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