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We performed a numerical study of the static diagonal conductivity o, in the lowest Landau level

for a disordered two-dimensional system in a magnetic field with short range impurity potentials.
We find scaling of the conductivity peak at a single critical energy which is governed by both the

localization length exponent v = 2.37 4+ 0.05 and an exponent n' = 1.63 & 0.03.
can be identified with the fractal dimension D(2).

We argue that n’
For the value of the critical conductivity we

obtained (0.5 4 0.02)e?/h in agreement with the hypothesis of universality.

PACS numbers: 73.40.Hm, 71.30.4+h, 71.50.4t, 71.55.Jv

The integer quantum Hall effect is closely related to a
disorder driven localization-delocalization transition oc-
curing in two-dimensional systems when the Fermi level
lies at a critical energy F°¢ at the center of the Landau
levels. The transition is characterized by a diverging loc-
alization length & & (E—E°)~". In a previous experiment
Koch [1] et al. were able to determine the critical expo-
nent v directly by studying the scaling of the peak width
of the diagonal resistance py, as a function of the system
The obtained value of v = 2.3 &+ 0.1 for the low-
est three Landau levels agrees well with theoretical res-

size.

ults. Extensive numerical approaches by Huckestein and
Kramer [2] based on finite-size scaling of the localization
length € yield v = 2.34 4+ 0.04 in the lowest Landau level.
This is in remarkable agreement with the analytical value
v = % of Mil’'nikov and Sokolov [3] or network models of
quantum percolation [4,5] with v = 2.43 + 0.18. But the
numerical fits rely on the assumption that there is a single
point E° at which & diverges. Huo and Bhatt [6] where
able to rule out a scenario with two mobility edges and
a finite region of extended states by identifying the first
Chern character of the eigenstates, which is a measure of
their extension and obtained v = 2.4 £ 0.1. The critical
conductivity at E° is claimed to be universal with a value
of %, irrespective of the range of the potential [4,5,7] and
also within a semi-classical approximation [8]. Chalker
and Daniell [9] have shown that the wave function under
quantum Hall conditions shows anomalous diffusive be-
haviour at the transition point. In particular they find
that the disorder-averaged density correlator S(r,r’; E°)
scales with | —#/|~". For electrons in the lowest Landau
level, moving in a Gaussian white noise potential, they
obtain n = 0.38 &£ 0.04. The exponent of anomalous dif-
fusion 7 is related [10,11] to the generalized dimension
D(2) of the wave function by

n=2-—D(2).

In the following we will present the results of a direct
evaluation of the diagonal conductivity. We find scaling
of the conductivity peak at a single critical energy which
is governed by both critical exponents v and 7. Also an
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estimate for the critical conductivity is obtained which is
compatible with the universal value.

We have developed a generalization of the MacKinnon
recursion method [12] which allows to calculate the dy-
namical conductivity o;;(w). The details of the method
will be published elsewhere. As a first check of the method
we used it to calculate the scaling properties of the static
conductivity o, (0). We start from the Kubo formula ex-
pressed in terms of Green’s functions G(¢) = [( — H]_l,
G = G(E +1¢) and G, = G(E 4 hw + ie). The real part
of 0, (w) at zero temperature is

e21 1 [Fr

Reoyo(w, EF) = e ; dE ReTr{(hz)QxwaG*

g — hw

— (hw)’2GuzG + 2icx* (G, — G*)}.

E'F 1s the Fermi level, v denotes the volume of the system
and z = w+2ie. The thermodynamic limit is achieved by
increasing the system size I, — oo and finally decreasing
¢ — 0%, in order to retain all contributions from the
spectrum of H. Thus we can proceed with a small, but
fixed value of ¢ and study the dependence of o (w, Er) of
the system size L. Following the course of MacKinnon we
build the system recursively from a stack of slices and set
up the corresponding system of iteration equations. The
possibility of setting £ to zero when using appropriate
boundary conditions has been discussed [12], but as we
will show it is of advantage to retain control over the
thermodynamic limiting process.

We study independent electrons of mass m and charge
q = —e moving in the x-y plane in a uniform perpendicu-
lar magnetic field B with A = (0, Bz, 0) and an impurity
potential V (r)

H= o (p-Lay 4 v,

T 2m

We consider potentials with electron-hole symmetry
and the correlation function

- 2 2 2
V(r+b)V(r) = 2:A2@—b 127,
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It is convenient to generate the potential matrix ele-
ments within the random matrix model instead of dis-
tributing individual random impurities, implying peri-
odic boundary conditions across the slices. The random
matrix model is based on the assumption that the scal-
ing behaviour and all physically relevant features of the
quantum Hall effect are independent of higher order cor-
relation functions of the potential. So far the random mat-
rix model has been successfully applied to the accurate
calculation [2] of the critical exponent v, the generalized
fractal dimensions [13] and the equilibrium current dis-
tributions [14]. Even if A = 0 a finite correlation length
of the order of the magnetic length | = (he/eB)'/? is
obtained [14].

We have studied systems with sizes I = 10! to 50/ for
short ranged impurity potentials, A = 0, and ¢ = 5x 10~*
to e =2 x 1073, The Fermi energy is varied in the range
—2 < E < 2. The energy scale has been normalized to
the second moment of the density of states p(F). This
is almost perfectly given by Wegner’s function [15] as we
have checked by an iterative calculation. In Fig. 1 the
static conductivity oL, (F) is shown as a function of the
Fermi level £. More than 1.5 x 10° iterations for the two
smaller systems and 10° iterations for the larger systems
were performed. The statistical errors are less than half
the symbol size. The conductivity peak becomes narrower
with increasing system size and the peak height increases.

The peak width for each system size can be obtained
with best accuracy by fitting a parabola ¢¢_ — (E/AF)?
within a small energy range —1 < F < 1 about the center
(shaded region). In Fig. 2 the width parameter AE is
plotted versus the system size. It can be seen that our
data are compatible with one-parameter scaling for sys-
tem widths larger than L = 15. The peak width is a
statistically very well behaved quantity and we
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FIG. 1. The static conductivity G'ILI(E) in units of e*/h
as a function of the Fermi level E. The system widths are
L=10(0), L =15(v), L =20(0), L =30(<), L =40(A)
with e = 1077,
lating AE.

Data in the shaded region are used in calcu-

obtain an accurate estimate for the critical exponent
v = 2.37 £+ 0.05 from a linear regression.

As shown in Fig. 1 the peak height increases with the
system size. The claimed universal fix point value o5, =
e?/2h is approached with a power law:

Ack = (c¢, — k) x L.

rxT rT

In Fig. 3 the peak value of oL (E¢) is depicted for three
values e =2 x 1073, e = 1 x 1073 and ¢ = 5 x 10~* and
several system sizes L = 10 to 50.

Figure 4 shows the double logarithmic plot of the devi-
ation AcL_ from the critical conductivity ol (E°,¢) for
various system sizes and values of ¢. Due to the finite
value of ¢ the critical value is systematically shifted. We
used the five largest systems for e = 2x 1073, ¢ = 1x 1073
and the four largest systems for ¢ = 5 x 10~* and adjus-
ted 7' simultanecously with o.5(£° ) for all values of
e. With ¢ = 2 x 10~ we obtain a fixed point value of
o¢, = 0.553, with ¢ = 1 x 10~3 we obtain ¢¢, = 0.535,
and with ¢ = 5 x 10_4 we obtain ¢f, = 0.516 with the
common exponent 7 = 1.63 £ 0.03. It can clearly be
seen that the unlversal conductivity o¢_ = e?/2h is ap-
proached with decreasing € and our estimate calculated
for the smallest ¢ is very close to this value.

We observe that with decreasing e the region in which
scaling can be observed is shifted to increasing system
sizes. The scaling relation of the static conductivity can
be summarized in

Gen(E, L) = 0% — ay (L9 (F — B9))” —agL™" + -+ ..

We will now establish a connection between the gener-
alized dimension D(2) of the wave function and the scal-
ing index 7'

Wegner [15] defines an ensemble-averaged inverse par-
ticipation ratio (IPR)

- St

W'(E = En) /Z(SE Ey).
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FIG. 2. Double logarithmic plot of the width AFE of the

az[‘z(E) peak versus the system size .. The dashed line indic-

ates the fitted exponent v = 2.37 £ 0.05.
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FIG. 3. The peak value of oiz(Ec) for e = 2 x 1072, (o),
e=1x107%, (@), e =5x 107*, (©) and systems of widths
L =10 to 50.

With the assumption that the average is invariant un-
der translation P(?) can be expressed by the ensemble
averaged two-point Green’s function. With the density
of states p(E) and some fixed r( it can be written as

7r
P(2)(E) = Egrgl+ lf(/—E)|G(E + ig, ro, 1‘0)|2,
showing that the IPR is proportional to the spectral com-
ponent p(E) of the return probability to r;. Wegner’s
critical exponent for P(2)(E) o« (F — E°)™(?) is connected
with the generalized fractal dimension by 7(2) = v D(2).
From that we find

p(&) < &P, (1)

In the critical regime length scales and time scales are
related by the dynamical exponent via é¥ = 7. Thus the
return probability p(7) at time 7 scales like

p(r) = PRz,
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FIG. 4. The scaling of the deviation AJILI(EC) from
the critical conductivity o5, for I = 10 to 50. With
e =2x107% (o) we obtain a§, = 0.553, withe = 1x107%,(0O)
we obtain o, = 0.535, for ¢ = 5 x 107*,(O) we find
0%, = 0.516, and n’ = 1.63 & 0.03, indicated by dashed lines.
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This relation has recently been studied [16] by comput-
ing the time evolution of wave packets built from states
near the localization-delocalization transition. With z =
2 they obtained D(2) = 1.62 + 0.04.

The transport coefficients in the linear response can
be connected with the scattering matrix formulation [17].
This is not surprising because the asymptotic behaviour
of the Green’s functions is closely related to the amp-
litudes in the scattering wave states. The reflection coef-
ficient R is proportional to the modulus squared of the
Green’s function with both arguments o — oo in the
incoming channel. Therefore the scaling property of the
averaged reflection coefficient R will be governed by the
power law (1) of the return probability

Rx E_D(Q).

Expressing the conductivity by the Landauer-Buttiker
formula for a two-probe measurement with ideal leads

¢2
o= ZT’ R=1-1,
where T' = Tr{ttt} and ¢ is the matrix of transmission
coefficients, we expect that the deviation of the conduct-
ivity from its fixed point value can be obtained from a
finite size scaling analysis

AO’L — (o_oo

Thus we estimate n = 2 — D(2) =2 — ' = 0.37+0.03.

In conclusion we have shown that the scaling behaviour
of the deviation of ¢, from the universal conductivity o<,
is governed by a power law with the critical exponent ' =
1.63 £ 0.03. We argue that 7’ can be identified with the
fractal dimension D(2). Furthermore we find that ¢¢, at
the center of the lowest Landau level is equal to 0.50£0.02
for short ranged potentials in excellent agreement with
the hypothesis of universality. From the peak width of
0. we directly obtained the exponent v = 2.37 4+ 0.05.
Our findings imply that 5’ could be measurable in low
temperature experiments similar to that of determining
the critical exponent v.

_O_L) x L_D(Q).

We would like to thank F. Evers for many valuable
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