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Localization Phase Diagram for a Disordered Two-Dimensional System in a Magnetic Field
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The phase diagram for the Anderson transition of a two-dimensional disordered system with
variable impurity concentration and a perpendicular magnetic field is investigated. A phase boundary

is found, separating localized from extended states. It is calculated by means of a finite size scaling
approach. The shape of the phase boundary and the change in the magnetoresistance are explained in
terms of quantum interference effects, 1.e., weak localization. A critical exponent for the correlation
length and the onset of the delocalized phase are determined.

PACS numbers: 71.30.4+h, 71.55.Jv, 72.15.Rn

In the zero temperature limit (7" = 0) the electronic
transport properties of a disordered system are mainly
determined by the extent of the eigenstates over the sys-
tem. Since the work of Anderson! it is well understood
that localization due to disorder can lead to a metal-
insulator (MI) transition (in the absence of a magnetic
field). In two dimensions (2D) localization is predicted
for any amount of disorder, whereas in 3D there is a crit-
ical value of disorder below which a mobility gap (region
of extended states) exists. In this paper we show from a
simple one-electron model for an impurity band that in
the presence of an external perpendicular magnetic field
a 2D system does exhibit two phase transitions above a
critical impurity concentration as a function of the field
strength. Moreover we demonstrate that the magnetores-
istance is expected to change its sign at a critical magnetic
field. In our model this behavior, usually discussed as the
competing effect of a positive magnetoresistance due to
electron-electron interactions with a negative contribu-
tion from localization?™, results solely from the partial
suppression of quantum interference in the presence of
the magnetic field.

We study the localization transition by calculating a
correlation length based on a generalization of the concept
of quantum connectivity.> We then employ a finite size
scaling analysis® ® to determine the critical magnetic field
as a function of the disorder and vice versa.’ In the limit
of a vanishing magnetic field (B = 0) we find complete
localization as predicted by the 2D Anderson model and
the scaling theories of localization.'® Finally we give some
arguments to interpret MI phase diagrams in terms of
weak localization.

Our description of the model starts from the 2D An-
derson tight-binding Hamiltonian

H= Z |60¢i(851 + > 16)(0i [V I6n){ b -

ik

Disorder is introduced by one-electron atomic orbitals
é(r;) positioned at random in a 2D square box of side
d. This model, known as topological disorder, has relev-
ance to systems such as thin amorphous films or doped
semiconductor layers at low temperatures. We introduce
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the magnetic field by gauge-invariant atomic orbitals'!

é(r,r;) = é(r — r;) exp [ie A(r;) - r [hel.

The symmetric gauge A(r) = —v x B/2 is used
throughout this paper. In strong magnetic fields (of or-
der B = 10T in semiconductors) a significant shrinkage
of the atomic orbitals adds to localization by reducing the
overlap at the sites,* which is included using translated
ground state solutions of the 2D harmonic oscillator of fre-
quency wg in the perpendicular magnetic field B as basis
functions. This approach results in Gaussian type atomic
orbitals with a radius that depends on the strength of the
magnetic field,

6(r) = (Vma)"' exp—(r*/2d%),

where a = (f'L/m*Q)]/2 is the effective oscillator radius,

Q = (wg +w%)1/2 is an effective oscillator frequency,
wp = eB/2m*c is half the cyclotron frequency, and m* is
the electron effective mass. For small magnetic fields a is
constant and we adjusted it to a typical doped semicon-
ductor system'? with a Bohr radius ap = h’c/e?m* &
100A. For B = 0 we identify ag = ap assuming a static
dielectric constant ¢ = 20, m* = 0.1 m,. It is conveni-
ent to introduce a dimensionless length L = d/aq and
a dimensionless concentration of centers ¢ = N/L%. The
statistically distributed impurities act as attractive short-
range scatterers which are considered by the potential

Vir)=-V ZZ d(r —r;).

We normalized Vy = hiwgma?. The eigenfunctions are cal-
culated with the standard linear-combination-of-atomic-
orbitals ansatz [¢) = 3. ¢;|¢;), yielding the secular equa-

tion
> (Hij -

J

EnSZJ) Cjn = 0,

which 1s solved numerically. For the expansion coeffi-
cients of the site states in the basis of the eigenstates
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|¢n) = >_; ajn|¥;) one obtains
i

In order to determine the spatial extent of the eigen-
states we introduce a correlation length for states within
a finite energy range (¢). Considering the transition amp-
litude from an initial state ¢ to a final state y

A= // Bz &Pz X (&' )G ', ®, 1) Y(x, 1)

and using the retarded Green’s function in the energy
representation,

G(a' @t —1) = =0 —1) Y V,(2') ¥} (=)

x exp [—iFn (¥ —t)/h],

the transition amplitude can be represented as a sum of
alternatives A = >, A.. The alternatives are divided
into the various energy ranges (¢) in which the transition
can be made. The transition probability of a state ¢ (@, ¢)
into x(x',t’) in the eigenstates of the energy range (¢) is
P. = lim |A.%.
t!'—+o0
Expanding initial and final states into eigenfunctions at
times t resp. t’ we readily obtain

DI+ Y (xIn)(nly)(glm)(mlx),

n#gm
En=Em

where the sums are over states with an energy in the range
(). If we identify initial and final states with our localized
atomic orbitals at r; ,r; and neglect the contribution from
degenerate states, the transition probabilities are

iy 5 5
PEU = Z|am| |a]n| .
n
We then define an energy resolved quantum connectivity

- Pl
ij _ €
AY = (P P.i7)1/?
in analogy to Skinner’s energy-independent connectivity.”

The correlation (localization) length for eigenstates in the
energy range (¢) is

<Zij AY riZj>

(i A)

Here the angular brackets indicate a configurational aver-
age. The localization length and Hamilton matrices are
generated with the minimum image convention to be con-
sistent with our periodic boundary conditions.

If a correlation length is available the most simple finite
size scaling analysis that can be done is the Nightingale

(€)= (1)
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(phenomenological) renormalization,®

Ti(K) = Ty (K')

with the transformation function 71, (K) = &1, (K)/L. The
fixed point of this renormalization-group transformation
for two finite systems of sizes . and L’ is an approxim-
ation for the critical threshold K. in the infinite system.
This relation is a direct consequence of the general finite
size scaling hypothesis.”® If we assume the singularity in
the correlation length to be o (K) ~ |K — K.|7", the
critical exponent is obtained from a linearization around
the fixed point,

v=In (L’/L)/ln|)\L///\L| s
A = 0T /0K |k=xk. .

In our case the scaled variable K is the concentration ¢
or the magnetic field B. To obtain the localization phase
diagram in the ¢-B plane we assume a critical exponent
ve(B) with €xo(c, B) ~ |c — co(B)|7"*®). Now the crit-
ical concentration depends parametrically on the mag-
netic field. Performing the renormalization-group trans-
formation

T, (C(B)) =Ty (c'(B)) 2)

on ¢ we can determine the critical values c.(B) for a series
of values for B and hence determine the phase boundary.
Similarly we can use o (¢, B) ~ |B — Bc(c)|_uB(c), and
solve the fixed point equations

T (B(c)) =Ty (B’(c)) (3)

for the critical magnetic field B, (c) for a series of concen-
trations c¢. It is important to note that in the latter case
&1 1s an even function of B. Thus we have to consider
the second term in the expansion around B.(¢) to find the
approximate critical exponent vg(c).

The calculations were done for systems of sizes L =
8,10,12,13,14,16 with the overlap matrix set to unity.
Though there is no obvious justification for this ortho-
gonality approximation it leads to a relatively small de-
crease 1n the critical concentrations as it has been noted
by several authors.>'3 The energy spectrum was divided
into eight ranges with equal numbers of eigenstates. Our
criterion for the MI transition is the first onset of a mo-
bility gap, i.e., the finite-size scaling yields a fixed point
in at least one of the energy ranges. Actually we found
very narrow mobility gaps in the lower-energy band tails.
We observed that averaging over larger (¢) (we also used
five ranges) or over the full energy band can hide the on-
set of a narrow mobility gap in small systems, shifting
cc to slightly higher values. Smaller () would require
too many configurations to be handled in our calculation.
All critical values obtained by (2) and (3) are compiled
in the localization phase diagram Fig. 1. For increasing
L, L' the critical values converged within the error bars
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FIG. 1. Localization phase diagram in the c-B plane. The
onset of a delocalized phase appears at ¢, = 1.6 & 0.05,
where the cyclotron radius is 2.2 times the Bohr radius.

given in Fig. 1, according to the Nightingale extrapola-
tion.%7 The error bars result from the averaging in (1);
horizontal bars where obtained by (2), vertical ones by
(3). For a fixed magnetic field B = 10kG, correspond-
ing to the onset of delocalization at minimal concentra-
tion (Fig.1), we calculated the critical exponent v L
for all pairs L, L/ = 12,13,14,16 averaging over 200
samples. The vl clearly exhibit a scaling behavior,
as shown in Fig. 2. We obtain an extrapolated value of
v, = 0.85+0.35. We did not achieve good enough statist-
ics to obtain a sufficient estimate for the exponent vg(c),
mainly because of the difficulty in determining the second
derivatives at the fixed point with sufficient precision.

The most intriguing feature of the phase boundary is
the existence of two critical fields for a fixed concentra-
tion ¢ > ¢min: When the magnetic field is increased the
insulating system becomes metallic. At larger fields the
mobility gap disappears and the system returns to the
insulating state. This second transition occurs at a mag-
netic field strength 1 order of magnitude smaller than the
field in which the shrinkage of our wave function becomes
the dominant mechanism*12 of localization. The critical
line has a constant slope in this region. In the limit B =0
the localized regime penetrates the phase diagram. This
is in agreement with the prediction of a complete 2D loc-
alization for any amount of disorder by Anderson and the
scaling theories of localization.'® The first onset of a de-
localized phase, the tip of the nose (Fig.1), is observed at
a critical value of the magnetic field satisfying I = 2.2 a,
where [ = (he/eB)'/? is the cyclotron radius.

Finally, we give an estimate of this critical field strength
discussing the essential influence of the magnetic field in
terms of weak localization.'* Weak localization considers
the interference of electron wave packets on closed tra-
jectories. A magnetic field destroys the coherence of amp-
litudes on time-reversed closed paths and thus decreases
the localization. In the field the amplitudes acquire addi-
tional phase factors, A — A
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FIG. 2. Critical exponents oL s 1/L+1/L' for all pairs

L,L' =12,13,14,16. The dotted line results from the extra-
polation (Ref. 7).
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x exp (tie¢p/hc), where ¢ = B - S is the magnetic flux
through a closed loop of the area S. The phase shifts
Ap(r) = 2ed/hc = 2mr? /12 between time-reversed tra-
jectories depend on the enclosed flux and thus on the
mean radius r of the loops. An electron bound in a deep
fluctuation in the random potential has the smallest pos-
sible mean radius for return to its starting point, given by
the radius a of an atomic orbital. More delocalized elec-
trons are scattered back to the starting point by paths of
a larger mean radius a + Ar. We get maximal destruct-
ive interference between closed loops with radii between
a and a + Ar if all phase shifts between 0 and 27 appear:
21 = Ap(a+ Ar) — Ap(a). The time dependence of the
probability to find an electron at time ¢ within a radius
r around g is given by the classical diffusion law,

P(r,t) = (47Dt)~" exp (=|r —ro|?/4Dt).

This implies that after a time ¢ the particle is found within
a radius Ar = 24/Dt around 7 neglecting all probabilit-
ies less than 1/e of the maximum value. Here D = Av/2
is the diffusion constant, A is the mean free path, and v
is the characteristic velocity of the particle. When there
is already significant overlap between the orbitals (¢ & 1)
the mean free path is A = a and the characteristic velocity
is approximately v = a2, i.e., the velocity of a particle
bound in the Bohr orbital. Since there is only interference
between closed paths that can be reached within diffusion
times of the typical orbit times, we can set v/Q¢ ~ 1 and
arrive at the relation

l~22a.

This criterion is in agreement with our numerical res-
ults and yields the critical magnetic field that results in
a maximal destruction of weak localization. Suboptimal
destruction for increasing fields gives the reason for the
reentrant transition. Thus we find the onset of a delocal-
ized phase on the line through the tip of the nose (Fig.1)
and expect the sign of the magnetoresistance to change
at a magnetic field satisfying the relation above. Such a
switch was observed in recent experiments on §-layer sys-
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tems'? at sufficiently low temperatures (T < 4.2 K).

Presently we are investigating possible corrections due
to the orthogonality approximation. In a future work we
would like to incorporate phonon coupling and Slater-
type orbitals to investigate the temperature dependence
and to consider the shrinkage of the atomic orbitals in a
more realistic way.
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